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MCNP5 program was used to investigate the neutron and gamma shielding properties of Ni-Ti- X Mo 
maraging steels. The MCNP5 program experimental setup was designed using neutrons of 14.1 MeV 
from sealed neutron tube and 

60
Co as a gamma ray source. Particular attention was given to the 

shielding properties of neutron and gamma for low nickel free cobalt, titanium containing modified 
maraging steel in correlation to the molybdenum as alloying element. Based on the shielding 
properties, Ni-Ti- X Mo maraging steels with different molybdenum content show the same shielding 
properties of neutron and gamma rays when compared to the standard maraging steel 18Ni (C250). In 
addition, the secondary gamma ray spectra due to neutron irradiation show no obvious difference 
between all steels under investigation. A comparison with available calculated and experimental results 
of the mass attenuation coefficient at gamma energies 1173 and 1332 keV for other steels has been 
done. From an economic point of view newly cobalt free low-nickel maraging steel is cheaper than 
standard C250 maraging steel as shielding materials.  
 
Key words: Neutron shielding,  gamma ray shielding, maraging steel, MCNP5 program. 

 
 
INTRODUCTION 
  
Today, nuclear radiation has a vital role in our recent live. 
It has applications in many fields like medicine, industry, 
agriculture, archaeology, geology, academics and many 
others. Radiation shielding materials are required to 
protect the population and equipments from harmful 
effect of radiation. For shielding design, neutrons and 
gamma rays are the main types of nuclear radiation, 
which have to be considered, since any shield that 
attenuates neutrons and gamma rays will be more 
effective in attenuating other radiations (Yılmaz et al., 
2011).  Therefore,  in  this  study,  the  gamma linear  and 

mass attenuation coefficients and the effective fast 
neutron removal cross-section with a mass removal cross 
section for compounds of maraging steels  (Ni-Ti- X Mo) 
with different molybdenum content were calculated, in 
addition, the secondary gamma rays emitted due to 
neutron interactions with these compounds have been 
studied. Maraging steels belong to a new class of high 
strength steels with the combination of strength and 
toughness that are among the highest attainable in 
general engineering alloys (Shetty et al., 2008). 
Voluminous experimental  data  have  been  accumulated
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Table 1. The chemical composition of steels under  investigation. 
 

Chemical composition, wt% 

Steel C Si Mn P S Cr Co Mo Ni Al Ti N Fe 

M15 0.019 0.071 0.021 0.013 0.008 0.007 - 0.007 12.0 0.06 0.0131 0.003 87.66 

M19 0.015 0.185 0.099 0.02 0.010 0.007 - 4.63 12.0 0.10 0.130 0.008 82.79 

M22 0.018 0.170 0.111 0.012 0.007 0.007 - 3.15 11.9 0.10 0.135 0.007 84.38 

C250 0.030 0.100 0.100 0.010 0.030 - 8 3.20 18.0 0.10 0.200 0.001 70.22 

 
 
 
on the effect of irradiation on the mechanical properties of 
many steels and alloys. Steels of this type with the 
highest strength are those containing cobalt. The use of 
steel with cobalt as a structural material in atomic 
applications is undesirable due to the high induced 
radioactivity under conditions of high-energy neutron 
bombardment. Expensive alloying additions such as Ni 
and Co increase the production cost for maraging steels 
as the cost has been the major roadblock for the 
widespread usage of these steels in domestic 
applications such as tooling, sport goods, etc. The high 
production cost in association with dual-use marketing 
issues has motivated research worldwide for cheaper 
alloy design. Cobalt-free maraging steels with high 
strength, ductility, and toughness have been developed in 
recent years (Hu et al., 2008; Nili-Ahmadabadi, 2008; 
Schnitzer et al., 2010; Leitner et al., 2011; Mahmoudi et 
al., 2011; Mahmudi et al., 2011; Sha et al., 2013). The 
best combination of properties of Maraging steel can be 
utilized in nuclear applications where high reliability is the 
principal concern. This work concerns, study the radiation 
resistance (neutrons and gamma rays) of low nickel 
titanium containing Maraging steel without cobalt and 
with different amounts of molybdenum in comparison with 
standard Maraging steel 18Ni (C250) through MCNP5 
code. MCNP5 code is a general-purpose Monte Carlo 
radiation transport code for modeling the interaction of 
radiation with matter. It utilizes the nuclear cross section 
libraries and uses physics models for particle interactions 
and gives required quantity with certain error (MCNP X-5, 
2003; Shultis and Faw, 2010). The neutron source used 
in the code is a point source which emits neutrons with 
energy 14.1 MeV. The two gamma energies used in the 
code are 1173 and 1332 keV emitted from 

60
Co as a 

source of gamma rays. 
 
 
EXPERIMENTAL  

 
Material design  

 
In this work, new developed free cobalt low nickel maraging steel 
with 12 mass percent nickel as base metal were designed. 12% Ni-
Ti new developed maraging steel with different amounts of 
molybdenum were investigated. To study the radiation resistance 

(neutron and gamma) of new developed maraging steels, the 
authors also study comercial maraging steel 18Ni (C250) for the 
sake of comparison. Table  1  shows  the  chemical  composition  of 

steels under investigations.  
 
 
MCNP5 experimental setup 
 
To calculate the fast neutron removal cross section and the linear 
attenuation coefficient of gamma rays for maraging steels under 
study, two narrow beam transmission geometries were done. The 
first geometry, for neutron, Figure 1(a) shows a lead box of 3 x 3 x 3 
m

3
 dimensions as a neutron source housing with a cylinder 

collimator of 1 cm radius. The detector was put on the same line at 
a distance 61 cm from neutron source. The detector collimator has 
an aperture of 1 cm radius and 5 cm thickness. The investigated 
materials were put between the source and the detector at a 
distance 40 cm from the source. The materials under investigation 
were a cylinder of 3 cm radius and thicknesses with 2, 5, 10 and 15 
cm. Tally type 4 was used to count the number of neutrons inter the 

detector per  MeV. cm
2
. s

-1
. The number of histories used in the 

code in the neutron case is 30 x 10
6
. The estimated statistical error 

in all neutron energy bens with these numbers of histories not 
exceed 10%. Also, The error in the energy bens of secondary 
gamma rays not exceed 0.05%. The second geometry, for gamma, 
Figure 1(b) shows the 

60
Co house box with dimensions 15 x 30 x 30 

cm
3
 made of lead and coated by 0.5 cm thickness of steel. A cone 

lead collimator was put between the source and the investigated 
material with 15 cm length, end opening of 0.5 cm radius and also 

coated with 0.5 cm of steel. The investigated materials were put 
between the source and the detector at a distance 22.5 cm from the 
source and have the same dimensions as in neutron geometry. The 
gamma detector was put on the same line in front of a gamma 
source at a distance 44.5 cm from it. The detector shield face was 
39.5 cm from the source with opening radius 0.5 cm. The same tally 
type 4 was used to estimate gamma photons registered in the 
detector per MeV. cm

2
. s

-1
. The number of histories used in the 

code is 20 x 10
6
. The statistical error in the calculated data not 

exceed 0.05% for each gamma energy.  
 
 
RESULTS AND DISCUSSION 
 
Neutron shielding properties 
 
Neutron attenuation through the investigated materials 
have been calculated by performing the transmission 
experiment in narrow beam geometry shown in Figure 
1(a). Figure 2 shows the neutron flux transmitted to the 
detector in case of no material and the neutron flux 
transmitted through 2, 5, 10 and 15 cm  thicknesses of 
the different shielding materials under investigation. The 
figure shows that, the fast neutrons were moderated  and 
moves from its higher group to a group of less energy. 
The number of moderated neutrons  was  increased  with
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       (a) Neutron setup                                (b) Gamma setup  

 
Figure 1. Experimental setup for measuring effective fast neutron removal cross-section (a) 

and gamma linear attenuation coefficient (b).  
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Figure 2. Transmitted neutron spectra versus neutron energy at different thickness of the investigated steels in comparison with neutron 

spectra without sample (black line).  

 
 
 
shielding material thickness increased. The important is 
that, the neutron moderation ratio for  the  different  steels 

and for the compared steel C250 is the same. This result 
was insured by calculating the effective fast neutron
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Table 2. Effective fast removal cross section ΣR (cm
-1

) and mass removal cross section ΣR/ρ (cm
2
/g) for steels 

under study. 
 

Steel No. 

 M15 M19 M22 C250 

ΣR (cm
-1
) 0.4976E-01 0.5038E-01 0.5073E-01 0.5287E-01 

ΣR/ρ (cm
2
/g) 0.6332E-02 0.6411E-02 0.6455E-02 0.6727E-02 

 
 
  

0 2 4 6 8 10 12
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

P
h
o
to

n
s
/c

m
2
.M

e
V

.s

Energy (MeV)

 No sample

 M 15

 M 19

 M 22

 C 250

 
 
Figure 3. Secondary gamma ray spectra arising from neutron interactions with 

under investigation steels. 

 
 
 

removal cross section (cm
-1

) which obtained by the 

equation   where I and I0 are the neutron 

intensity with and without the material between the 

neutron source and the detector respectively and is the 

material thickness. Therefore, plotting each  versus 

, the slope of the straight line obtained is the value 

of the material. The obtained effective fast neutron 

removal cross section (cm
-1

) and the mass removal 

cross section ΣR/ρ (cm
2
/g) for the investigated materials 

are tabulated in Table 2 with the values of standard steel 
for comparison. As shown in the table, the produced 
steels have approximately the same values of effective 
and mass removal cross-section and as the values of the 
standard material C250. This means that, our produced 
steels work as neutron shielding material and have the 
same neutron attenuation in comparison with the 
standard. 

Secondary gamma rays  
 

Interaction of neutrons with elements constitute the 
material produce secondary gamma-rays. Figure 3 shows 
the spectra of gamma-rays produced due to interactions 
of neutrons with 2 cm thickness of steels under 
investigation including the standard. There are no appear 
signals for gamma coming from the cobalt present in the 
standard sample C250 as expected. This can be 
explained by, the number of neutrons which moderated 
and arrived to thermal neutrons is a very modest number 
due to the small thicknesses used in the study. In 
addition, the self shielding of  the material makes it 
absorb some of produced gamma rays specially low 
energy gamma like that produced from neutron 
interaction with cobalt (1173 and 1332 keV). Also, the 
figure shows an increase in secondary gamma for the 
standard steel in the energy range from 5.5 to 8 MeV 
more than others. Figure 4 shows the integral flux of 
secondary gamma versus the material thickness of all 
investigated materials. As shown in figure the integral flux 
decreases exponentially with material thickness increase.  
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Figure 4. Integral flux of secondary gamma versus shielding material 

thickness of all studied materials. 

 
 
 
This is because, the most number of neutrons interact 
through the first layers of shielding materials and produce 
secondary gamma rays which shielded from the residual 
layers of the material itself. An empirical equation for the 
emitted secondary gamma rays versus material thickness 
can be deduce in the form  where,  is the 

integral flux of secondary photons and  is the material 

thickness and a, b are constants for the material type.  
 
 
Gamma ray shielding properties 
 

Narrow beam geometry shown in Figure 1(b) was used to 
study gamma ray attenuation through our materials and 
through the standard one. Figure 5 shows 

60
Co gamma 

ray spectra transmitted through 2, 5, 10 and 15 cm 
thickness of the investigated materials with gamma 
spectra transmitted directly without material between the 
source and the detector. As shown in the figure, for all 
materials there is no obvious difference in the values of 
gamma attenuation. Also, when material thickness 
increase gamma intensity decrease. Intensity of the two 
gamma lines 1173 and 1332 KeV which collected under 
energy bins 1200 and 1350 KeV respectively were 
calculated versus the material thicknesses. As in the 
case of neutron, the gamma linear attenuation coefficient 
µ (cm

-1
) of the two gamma lines for materials can be 

calculated from the equation  where I, I0 are the 

gamma line intensity with  and  without  the  material  and 

is the material thickness. Hence, plotting each  

versus  for each gamma line, the slopes of the two 

straight lines obtained are the values µ of the material for 
these two energy lines. The values of gamma linear 
attenuation coefficient µ (cm

-1
) and mass attenuation 

coefficient µ (cm
2
/g) of the materials for the two gamma 

lines are summarized in Table 3. The tabulated data 
show the obvious approximation between the 
investigated materials in attenuation of gamma rays. 
Also, there is no difference between standard steel and 
the investigated materials in gamma attenuation. 

The results of the present simulation of the mass 
attenuation coefficient at energies 1173 and 1332 keV 
were compared with the experimental results of different 
steels (Akkurt, 2009; EL-Kameesy et al., 2011). In 
addition, the present results were compared with the 
theoretical and simulated results of WinXcom, Geant4 
and MCNP (Singh et al., 2015) for steel 1. The chemical 
composition of compared steels is shown in Table 4. 
Table 5 shows the results of the present work and the 
possible experimental and calculated data reported in the 
mentioned different literatures. As shown in Table 5 the 
results of the present study agree with the theoretical
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Figure 5. Gamma ray spectra transmitted to the detector in present of shielding materials with different thicknesses compared with 

no shielding materials. 
 
 
 

Table 3. Gamma linear attenuation coefficient µ (cm
-1

) and mass attenuation coefficient µ/ρ (cm
2
/g) for steels under investigation.  

 

Steel No. 
Eγ=1173 KeV Eγ=1332 KeV 

µ (cm
-1
) µ/ρ ( cm

2
/g) µ (cm

-1
) µ/ρ ( cm

2
/g) 

M15 4.1903E-01 5.3311E-02 4.0301E-01 5.1274E-02 

M19 4.1992E-01 5.3424E-02 4.0460E-01 5.1475E-02 

M22 4.1913E-01 5.3324E-02 4.0446E-01 5.1458E-02 

C250 4.1958E-01 5.3382E-02 4.0301E-01 5.1273E-02 

 
 
 

WinXcom and simulated Geant4, MCNP results for steel 
1. The difference from the experimental results may be 
due to the setup of the experiments and the steel density, 
in addition to the difference in compounds of the steels. 
 
 
Conclusion 
 
The produced steels have the same ability to moderate 
neutrons and to attenuate gamma rays in comparison 
with C250 Maraging steel. The problem of secondary 
gamma rays produced due to neutron interactions with 
steel can be solved with higher material thickness, where 
there is an exponential relation between secondary 

gamma and the material thickness due to the material 
self shielding. The results of gamma ray  mass 
attenuation coefficient at energies 1173 keV and 1332 
KeV for steels under investigation were found 
comparable  with  experimental  results,   the   theoretical 
WinXcom, the Geant4 and MCNP simulation values of 
others steels. From economical point of view, newly 
modified Maraging steel with previous shielding 
properties are promising material in shielding 
applications. Future work should be done to study 
neutron shielding properties and neutron reflection 
characteristics at higher thicknesses and at higher 
temperature for the produced steels to be used as a 
nuclear reactor vessel. 
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Table 4. The chemical composition of comparative steels (Akkurt, 2009; EL-Kameesy et al., 2011; Singh et al., 2015). 

 

Chemical composition. wt% 

Steel C Si Mn P S Cr Co Mo Ni Al Ti N Cu W Fe 

S1 0.1200 0.37 1.00 0.024 0.005 17.0 0.07 0.630 6.86 - - - 0.210 - 73.70 

S2 0.9000 - - - - 4.10 - 5.000 - - - - - 6.4 83.70 

S3 0.1200 0.05 0.28 0.060 0.008 0.02 - 0.005 0.013 - - - - - 98.50 

Steel 19 0.0102 - - - - 3.71 - 3.190 12.03 - 0.0250 - - - 81.03 

Steel 21 0.0880 - - - - 4.36 - 3.180 12.16 - 0.0400 - - - 80.17 

Steel 12 0.0169 - - - - 5.04 - 2.870 12.12 - 0.0300 - - - 79.92 

Steel 1 0.4200 0.25 0.89 0.021 0.110 1.05 - 0.200 0.06 0.049 0.0019 - 0.010 - 97.03 

 
 
 
Table 5. The mass attenuation coefficient at energies 1173 keV and 1332 keV for the steels under investigation and the comparative steels (Akkurt , 2009; EL-Kameesy et al., 2011; Singh et 

al., 2015) for the sake of comparison.  
 

Energy 
(keV) 

Present study 
Experimental 

(Akkurt, 2009) 

Experimental 

(EL-Kameesy et al., 2011) 

Theoretical and simulated 

(Singh et al., 2015) 

M15 M19 M22 C250 S1 S2 S3 Steel 19 Steel 21 Steel 12 Steel 1 

1173 5.331E-02 5.342E-02 5.332E-02 5.338E-02 4.84E-02 4.449E-02 7.141E-02 6.700E-02 7.247E-02 7.081E-02 5.490E-02 

1332 5.127E-02 5.147E-02 5.145E-02 5.127E-02 3.25E-02 3.336E-02 6.664E-02 6.245E-02 6.521E-02 6.360E-02 5.120E-02 
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We describe two methods of extracting physical parameters of a non ideal p-n diodes. These include 
the ideality factor, saturation current and series resistance. The proposed techniques that treat 
extraction parameters, using the current-voltage characteristic (I,V) forward biased. The first method is 
to learn three different points of the curve, with the coordinates of these points, one can generate a 
system of nonlinear equations expressing the electrical parameters. The resolution of these non-linear 
equations was performed by the numerical method of Newton-Raphson. The second is based on the 
least squares method. Both methods are tested using programs developed in Matlab code based on the 
experimental characteristic (I-V) of two different diodes in silicon. 
 
Key words: Diode characteristic, electrical parameters, w-function Lambert, equations of non-linear system, 
method of least squares. 

 
 
INTRODUCTION 
 
Photovoltaic (PV) cells are the elementary components of 
a PV generator and their electrical properties are 
exhibited nonlinear in light of recent research results 
(Masoum et al., 2002). A commercial PV module is 
composed of a series of PV cells connected electrically. 
In view of the fact that the power generated by PV 
modules is heavily dependent on a number of 
atmospheric conditions (e.g. temperature and solar 
irradiance), the efficiency of energy conversion has 
drawn the most attention in PV  system  design  (Hussein 

et al., 1995; Chun and Kwasinski, 2011; Kumar and 
Panchal, 2013). The solar cell behavior under illumination 
is interpreted by several models; whose the equivalent 
electrical circuit based on single diode is the most widely 
used (Kumar and Panchal, 2013; Fathabadi, 2013; 
Rajasekar et al., 2013). Although the one-diode model is 
considered accurate, it is often times elaborated in order 
to follow the behavior of solar cells more adequately. 
Ben-Oretal and Appelbaum (2013) extended the set of 
conventional parameters in the one-diode model, to
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include 8 parameters instead of 5. By adding to the 
model α; Vbr and m – the cell's correction coefficient, 
break down voltage and exponent-power, respectively, 
the model was extended to cover the cell's negative- 
voltage operation mode, the extraction of the parameters 
of the single-diode solar cell model from experimental I-V 
characteristics of Si and Multi-junction solar cells by 
Appelbaum and Peled (2014). The current-voltage 
relationship of a diode is non-linear. The nonlinearity 
complicates the resolution of electrical circuits (rectifying 
the alternating current limiting circuit etc.). Despite this, 
the current-voltage (I-V) biased can serve as a basis for 
the extraction of physical parameters of ideality factor (η), 
series resistance (Rs) and saturation current (Is) the 
knowledge precisely of these parameters allows us to 
understand and explain some electrical phenomena in 
these junctions (Mott, 1990; Sertap et al., 2010; 
Alivisatos, 1996). The parameters extraction requires the 
device and method for data analysis. A large number of 
published techniques (Ferhat-Hamida et al., 2002; Ortiz-
Conde and García Sánchez, 2005; Zhou et al., 2009; 
Ranuárez et al., 2000; Lien et al., 1984; Sato and 
Yasumura, 1985; Cheung and Cheung, 1986; Lugo et al., 
2010) describe solutions to this problem. Each of these 
methods has drawbacks, either in terms of use and 
accuracy, or at the convergence and speed (Ortiz-Conde 
et al., 1999).  The Lambert W -function has been used in 
many branches of physics, especially in fractal structures 
(Asgarani and Mirza, 2008). The application of physics-
based mixed-mode simulations to the analysis and 
optimization of the reverse recovery for Si-based fast 
recovery diodes (FREDs) using Platinum (Pt) lifetime 
killing is given by Cappelluti et al. (2006).  

In this work, we presented two numerical methods to 
study the electrical behavior (I,V) of a diode. Examination 
of the electrical characteristic (IV) is used to extract the 
main parameters that characterize it, including the 
saturation current, series resistance and coefficient of 
ideality. The first method is based on the coordinates of 
three distinct points of the electrical characteristic (IV), to 
generate a system of nonlinear equations that express 
the electrical parameters according to the coordinates of 
these points and the resolution of this system non-linear 
equation has been performed by the digital method of 
Newton-Raphson. The second method developed is 
articulated on the least squares algorithm. The both 
methods are tested on the characteristic (I-V) of two 
diodes 1N4005 and Motorola (Ortiz-Conde et al., 2000) 
based on silicon, using programs developed in Matlab 
code. The results are discussed on the speed plan, 
precision and error. 

 
 
Explicit analytical solutions 
 
The equation relating the current I to the voltage V in an 
ideal diode is given by: 
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exp 1S

qV
I I

KT

  
   

  

                                             (1) 

 
This equation is derived from the physics of 
semiconductors. This simplified physical model brings up 
a single parameter: the saturation current IS is a leakage 
current flowing through the junction regardless of the type 
of polarization. It is due to the phenomenon of diffusion of 
minority carriers into the neutral areas (holes towards the 
p-type region and the electrons toward the n-type region) 
and the phenomenon of generation of free carriers in the 
space charge zone, q = 1.6×10

-19
C is the electron 

charge, k = 1.38×10
-38

 J/K is the Boltzmann constant and 
T is the temperature in degrees Kelvin. A slightly more 
sophisticated model gives (Physics of Semiconductor 
Devices, 2006): 
 

exp 1S
S

T

V R I
I I

V

  
    

  

                                      (2) 

 
Where RS is the series resistance, which is a parameter 
of major interest, the higher the value, the greater the 
distance from the ideal diode model. It is due to the 
resistance of the neutral regions of semiconductor 
material and making contacts ohmic semiconductor metal 
that can be reduced by overdoing the surface region of 
the semiconductor where we want to establish the ohmic 
contact. Η is the ideality factor or quality which depends 
on the bias voltage. It provides information about the 
origin of the current flowing in the junction. It takes the 
value 1 if it is a diffusion mechanism. For the 
recombination mechanism it takes the value 2. When the 
two streams are similar, the factor η is a value between 1 
and 2. If it takes other values, this means that other 
mechanisms are involved in the current transport.  

Figure 1 shows the equivalent circuit for this model. It is 
well known that the transcendental Equation (2) cannot 
be solved explicitly in general I or V using common 
elementary functions. Therefore, it is customary to use 
approximate solutions explicit modeling purposes. Many 
of these approximate solutions have been proposed 
(Ortiz-Conde and Garcia Sánchez, 1992; Le Bihan, 2001) 
that use only the basic functions. After all, the exact 
explicit analytical solutions of I and V today already exist 
(Banwell and Jayakumar, 2000) that make use of the 
special function called W function Lambert of (Khalis et 
al., 2011), a special feature that is not expressible in 
terms of elementary analytic functions. W function 
Lambert is defined as the solution of the equation w (x) 
exp (w(x)) = x this function is used to solve some 
unsolved analytically diode. The exact analytical solution 
of the general equation (2) is expressed in terms of W 
function Lambert. 
                           

expS S S ST
S

S T T

I R V R IV
I I Lambertw

R V V



 

  
      

  

            (3)   
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Figure 1. Equivalent circuit of a diode in a single exponential 
including parasitic series resistance. VT = KT / q is the 
thermal voltage, V and I are the voltage and current output 
respectively. 

 
 
 
METHODS 

 
The first technique is to learn three different points of the curve, the 
first point to the beginning of the curve, the second just code and 
the third at the end. Is based on the coordinates of these points, 

one can generate a non-linear system of equations expressing the 
unknown electrical parameters (Is, RS and η). 

To simplify the writing of nonlinear equations (4) we take: A(1) = 

IS, A(2) = RS and A(3) = ηVT as (V1, I1), (V2, I2) and (V3, I3) designate 
the coordinates of the three distinct points of the characteristic (I-V). 
While applying the Equation (2) successively to the three preceding 
points, one gets a system of three non linear equations therefore in 
three unknown A(1), A(2) and A(3): 

 

1 1 1

2 2 2

3 3 3

(1)*(exp((V - (2)*I )/ (3))-1) =I

(1)*(exp((V - (2)*I )/ (3))-1) =I

(1)*(exp((V - (2)*I )/ (3))-1) =I

A A A

A A A

A A A







                         (4) 

 
To solve the system of Equations (4), we will focus on the Newton-

Raphson method for solving the system of nonlinear equations. We 
will try to find the value A = (A(1) A(2)  A(3)), which more or less 
cancel the function f = (f1 f2 f3). The function f is given by Equation 
(5):                      
                     

 

1 1 1 1

2 2 2 2

3 3 3 3

(1)*(exp((V - (2)*I )/ (3))-1) -I

(1)*(exp((V - (2)*I )/ (3))-1) -I

(1)*(exp((V - (2)*I )/ (3))-1) -I

f A A A

f A A A

f A A A





                 (5) 

 
The Newton-Raphson iterations can approach the value A by using 
the following algorithm: 
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      (6) 

 
In all iterative methods, it is necessary to avoid divergence of the 
solution, to choose the initial value A0. To leave not too  much  from 

one point initial x0 far from the solution. 
The second method is a technique based on the least squares 

method (Least Mean Square LMS), this method is based on that 
used by S-PLUS Manual (1998) to determine the physical 
parameters of a solar cell. The method of least squares is one of 

the most widely used to model the experimental measurements by 
predetermined analytical function (3) methods. This method is to 
minimize the mean absolute or relative difference between the set 
of N measurements Ii and Vi is the result set I (Vi-p) based on the 
model of Equation (3). In other words, it is to minimize the following 
function: 
                                                    

  
2

1

,
N

i i

i

I I V p


                                              (7) 

 
Where p = p (IS, RS, η) is the set of parameters that will minimize 
the error ε. 

 
 
RESULTS AND DISCUSSION 
 
To validate the two proposed methods, a test was 
performed on the 1N4005 diode based on silicon (Lugo et 
al., 2010) and Motorola (Ortiz-Conde et al., 1999). The 
results of the characteristic measures (I-V) are shown in 
Figure 2. 

The values of the electronic parameters found by 
solving nonlinear equations by the Newton-Raphson are 
summarized in Table 1. Substituting the average value IS, 
RS, η in Equation (3) of the diode characteristic and using 
the experimental data (Ii-Vi), one obtains the Figure 2. 

From Equation (5) and from the experimental data (Ii-
Vi), the principle of least squares is to minimize the 
function (ε) by the variation of parameters p until the 
deviation is minimum (where zero, if the agreement is 
perfect). To check if the data correctly overlay to 
Equation (5), the unknown electric parameters (IS, RS and 
η is plotted the two corresponding curves as shown in 
Figure 3. Then the Matlab output function provides). The 
values found by the least square method are given in 
Table 2.  

The application of our methods to two diodes different 
from two different companies. The results gotten by the 
two technical are in good agreement with  those  given  in  
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Figure 2. Comparison between the characteristic (I,V) and the method of 

solving the equations of nonlinear system (SENS) (Zarebski, 2007). 
 
 

 
Table 1. Results found by the solving non-linear equations, least squares methods and Literature values for 

1N4005 diode. 
 

Parameter 
Method of solving the system of 

nonlinear equations 
Least squares method 

Literature 

 (Zarebski, 2007) 

RS (Ω) 0.14966 0.16931 0.15 

IS (nΑ) 31.4 11.198 4.63 

Η 1.95 1.815 1.7756 
 
 
 

 
 

Figure 3. Comparison between the characteristic (I,V) and the method of 

solving the equations of nonlinear system (SENS) (Ortiz-Conde et al., 1999). 
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Table 2. Results found by the solving non-linear equations, least squares methods and Literature values for 
Motorola diode. 
 

Parameter 
Method of solving the system of 

nonlinear equations 
Least squares 

method 
Literature (Ortiz-Conde 

et al., 1999) 

RS (Ω) 27.857 28.922 33.4 

IS (nΑ) 0.5582 0.43968 0.58 

η 0.97 0.97 1.05 

 
 
 
the literature. It shows the hardiness of the two methods 
used in this work. The Newton-Raphson method 
converges faster in relation to least squares method. 
 
 

Conclusion 
 

In this article, we present two new methods of extracting 
three physical parameters of a non-ideal p-n junction 
from its current-voltage characteristic I = f (V). Both 
methods require the introduction of initial values. The first 
technical is method of solving the system of nonlinear 
equations using the some parameters given in 
experiment results. The second method is based on the 
least squares algorithm. This technical represent an 
extraction process of rapid and accurate parameters. The 
values of the physical parameters extracted by the two 
methods are in good agreement with the experimental 
values and with literature. The application of the both 
methods can be extended to components having same 
five parameters such as solar cells.  
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Surface physico-chemical and thermodynamic studies of some aqueous surfactant solutions were 
carried out by employing conductance, surface tension and dye solubilization (UV-Vis absorption 
spectroscopy) techniques. From conductivity and surface tension measurements, critical micelle 
concentration (CMC), counter-ion association constant (α), equivalent conductance at infinite dilution 
(λo), surface exess concentration (Гmax ), minimum area per molecule (Amin), surface pressure at CMC 
(πCMC), thermodynamic properties of micellization (∆G

o
mic, ∆H

o
mic, ∆S

o
mic) and adsorption (∆G

o
ads, ∆H

o
ads, 

∆S
o

ads) have been obtained for an anionic (sodium dodecyl sulphate (SDS)), a cationic (hexadecyl 
trimethyl ammonium bromide (HTAB)) and nonionic (Polyoxyethylene (20) sorbitan mono-oleate (Tween 
80)) surfactant solutions. Effect of mixing cosolvents (1,2-Ethanediol or 1,2,3-Propanetriol) on physico- 
chemical properties of surfactant systems at 298.15, 308.15 and 318.15K has been investigated. 
Surfactants micellar characteristics and their interactions with cosolvents were also investigated by Uv-
vis absorption spectroscopy measurements of solutions using bromothymol blue as a probe. The 
inclusion of cosolvents caused an increase in CMC and degree of counterion dissociation (β) of 
surfactant solutions whereas the thermodynamic analysis shows that, although the micellization is less 
favorable in mixed solvent compared to pure water, the process is spontaneous and exothermic. 
 
Key words: Conductance, dye solubilization, micellization, surface physico-chemical properties. 

 
 
INTRODUCTION  
 
Investigations about the micellization characteristics of 
different types of surfactants are still carried out mostly in 
water and in aqueous media containing additives that can 
alter the water structure. Despite extensive studies made 
on the micellization behavior of surfactants in different 
types of media, it is still not exactly clear which property 
of a solvent controls the micellization  process.  However, 

high cohesive energies, dielectric constants and 
considerable hydrogen bonding ability between the 
solvent molecules have been reported to be a 
prerequisite for aggregation of surfactants (Tharwat, 
2005). In recent years there has been a renewed interest 
on the study of adsorption and aggregation of surfactants 
in solvent media containing a binary mixture of water  and
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a polar nonaqueous solvent as evident from published 
papers (Tharwat, 2005; Kabir-ud-Din and Koya, 2011; 
Sansanwal, 2005; Homendra and Devi, 2006; Das and 
Ismail, 2008; Zdziennicka, 2009; Dubey, 2008; Hideki, 
2009; Zdziennicka and Jańczuk, 2010; Deepti et al., 
2011; Sibani et al., 2013). Carrying out investigation on 
the effect of added cosolvents on the micellization of 
surfactants is also equally important so as to gather 
knowledge about the role of solvent structure on 
aggregation phenomenon so that it could be applied for 
the development of certain areas (e.g., cleaning 
operation, lubrication, etc.) which require a water-free or 
water-poor media (Cross and Singer, 1994; Laurier et al., 
2003). Several such studies were carried out in aqueous 
medium and the commonly used nonelectrolytes are 
dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 
dimethyl acetamide, acetonitrile, dioxane, urea and n-
alkanols (Tharwat, 2005; Kabir-ud-Din and Koya, 2011; 
Sansanwal, 2005; Homendra and Devi, 2006; Deepti et 
al., 2011; Sibani et al., 2013).  

1,2-Ethanediol (ED) and 1,2,3-Propanetriol(PT) are 
another polyhydric organic alcohols which has poly sites 
for hydrogen bonding and there are few reports (Hideki, 
2009; Amalia et al., 2009; Nagarajan and Wang, 2000) in 
the literature about the micellization of ionic surfactants in 
water mixed medium. The author had therefore made a 
detailed study of the micellization behavior of an anionic 
(sodium dodecyl sulphate (SDS)), a cationic (hexadecyl 
trimethyl ammonium bromide (HTAB)) and nonionic 
(Polyoxyethylene (20) sorbitan mono-oleate (Tween 80)) 
surfactant solutions on adding the organic solvents ED or 
PT to water by employing conductometric, surface 
tension and dye solubilization (UV-Vis absorption 
spectroscopy) methods. 

The study has been carried out at three different 
temperatures, 298.15, 308.15 and 318.15K, which helped 
to compute thermodynamic parameters of micellization 
assuming equilibrium model for micelle formation. 
 
  
MATERIALS AND METHODS  

 
The surfactants SDS (BDH chemicals Ltd, England), HTAB (99+%, 
Acros organics Ltd, USA), Tween 80 (98+%, Acros organics Ltd, 
USA) and organic solvents 1,2-Ethanediol (99.5%, Breckland 
Scientific Supplies, U.K), 1,2,3-Propanetriol(99%, Blulux, 
Laboratory Ltd.) were used as received. Other chemical reagents 
which were used in this work were: Potassium chloride (99%, 
Blulux, Laboratory Ltd.), Bromothymol blue (dye content: 85%, BDH 

chemicals Ltd, England ), Absolute ethanol (99.9%, Hayman Ltd., 
England), n- Hexane (BDH chemicals Ltd, England), Acetone 
(Sigma-Aldrich, Germany), Glacial acetic acid (Hayman Ltd., 
England), Toluene (HPLC grade,  Analytical reagent, CDH (P) LTD, 
India), and 1,4- Dioxane ( Blulux, Laboratory Ltd.). 
 
 
Conductance measurement 
 

Conductance of ionic surfactant solutions (SDS or HTAB) with and 
without cosolvents(1,2-Ethanediol  or 1,2,3-Propanetriol) was 
measured over a wide range of  surfactant  concentrations,  at  298,  
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308 and 318K. The conductivity data was obtained using a digital 
conductivity/temp meter (ELE International, model 4071, England) 
equipped with a dip cell (cell constant: 1.03 cm

-1
) and the calibration 

of the instrument was made with 0.01 M KCl solutions at regular 
time intervals and the electrode was cleaned with distilled water 
after each measurement. Distilled and triply deionized water with a 
specific conductivity of less than 1 × 10

-6
 Scm

-1
, was used 

throughout the experiment. All the experiments were done in a 
thermostated water-bath holding the solution under study. The 
solutions (water/surfactant or water/cosolvent/surfactant mixtures) 
were thermally equilibrated at the desired temperature for at least 
15 min before measurement. Temperature control of thermostat 
was within ± 0.1°C.  

 
 
Surface tension measurement 
 
Surface tension of surfactant solutions was determined by drop 
weight method using a specially designed stalagmometer (Wilmad 
lab. Glass, LG-5050-102, USA) at the desired temperatures. The 
stalagmometer was calibrated by determining the surface tension of 
pure liquids: absolute ethanol, acetone, n-hexane, acetic acid 

(glacial), toluene, 1,4-dioxane and water as standard. The 
observations were made in a thermostated water bath holding the 
solution under study. The temperature control around the solution 
was maintained within ± 0.1 K. 
 
 
Absorbance measurement 

 
The absorbance of surfactant solutions with and without cosolvents 

was measured over a wide range of surfactant concentrations, 
using bromothymol blue (BTB), at 298 K. Magnetically stirred (for 
an hour) and filtered saturated aqueous solution of BTB was used 
as probe for each measurement. The absorbance data was 
obtained using double beam UV- Visible spectrophotometer 
(Sanyo, SP 75, Japan) and the base line correction was made by 
using water (distilled and deionized). The absorbance of solutions 
was noted at equilibrated temperature of 25 ± 0.1˚C. 

 
 
RESULTS AND DISCUSSION 
 
Critical micelle concentration 
 

The critical micelle concentration (CMC) values of 
surfactants in various compositions of water-ethanediol 
(W/ED) and water-propanetriol (W/PT) mixtures, 
estimated through conductometric, surface tension and 
UV-Visible absorbance spectroscopy experiments at 
298.15, 308.15 and 318.15K are listed in Tables 1 to  3. 
In these techniques, usually, CMC values are determined 
from the inflection point in the plots of specific 
conductance (κ) versus surfactant concentration (Figure 
1), surface tension versus logarithm of surfactant 
concentration (Figure 2) and absorbance versus 
surfactant concentration (Figure 3) by plotting two straight 
lines in the pre and post micellar regions according to 
William’s method (Tharwat, 2005; Maria et al., 2005).  

In the studied pure aqueous surfactant solutions, CMC 
values are in the order: SDS > HTAB > Tween 80 (Tables 
1 to 3). CMC of ionic surfactants (SDS or HTAB) are 
higher than nonionic surfactant (Tween 80) owing to the 
ion- ionic  head  group  repulsion  in  case  of  the  former  
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Table 1. Critical micelle concentration (CMC), surface excess concentration (max), minimum area per molecule (Amin) and surface pressure at 

CMC (cmc) for aqueous SDS solution with or without cosolvent systems. 

 

System T(K) 
CMC (m moldm

-3
) 

Α 
ΛO x 10

-1 

(S cm
2
 mol

-1
) 

max10
10 

(mol cm
-2
) 

Amin10
2 

(nm
2
) 

cmc 

(mN m
-1
) *C         *S             *A 

SDS + H2O 

298.15 8.11 7.98 8.14 0.62 8.72 2.38 69.78 31.07 

308.15 8.52 8.48  0.60 9.49 2.17 76.52 31.85 

318.15 9.00 8.92  0.58 10.67 2.00 83.03 31.98 
          

SDS + ED(1M) + 
H2O 

298.15 8.98 8.76 8.95 0.59 13.28 1.74 95.43 32.29 

308.15 9.23 9.17  0.55 14.95 1.66 100.0 32.84 

318.15 9.55 9.53  0.53 17.04 1.58 105.1 32.87 
          

SDS + ED(2.5M) + 
H2O 

298.15 9.33 9.21 9.32 0.58 15.68 1.47 112.9 32.91 

308.15 9.40 9.29  0.56 18.03 1.41 117.7 33.26 

318.15 9.71 9.67  0.55 19.30 1.30 127.7 33.54 
          

SDS + ED(4M) + 
H2O 

298.15 9.67 9.57 9.61 0.55 15.59 1.25 132.8 34.44 

308.15 9.81 9.87  0.53 17.16 1.14 145.6 34.63 

318.15 9.99 9.94  0.50 19.45 1.05 158.1 34.71 
          

SDS + PT(1M) + 
H2O 

298.15 8.62 8.60 8.57 0.61 7.02 2.21 75.14 32.01 

308.15 8.88 8.86  0.58 7.85 1.99 83.45 32.39 

318.15 9.21 9.20  0.56 8.39 1.83 90.74 32.47 
          

SDS + PT(2.5M) + 
H2O 

298.15 8.98 8.91 9.00 0.59 6.05 2.17 76.52 32.77 

308.15 9.18 9.06  0.58 6.46 2.03 81.80 32.99 

318.15 9.50 9.43  0.55 7.03 1.83 90.74 33.11 
          

SDS + PT(4M) + 
H2O 

298.15 9.44 9.30 9.45 0.59 4.35 2.03 81.80 32.97 

308.15 9.77 9.73  0.59 4.99 1.85 89.76 33.06 

318.15 9.82 9.80  0.56 5.57 1.67 99.43 33.28 
 

*C, *S,*A are CMC values obtained from conductance, surface tension and absorbance measurements respectively. 

 
 
 
surfactants (Tine and Bešter-Rogac, 2007). Lower values 
of CMC for HTAB in comparison to SDS is attributed to 
comparatively weaker ionic head groups repulsion in 
case of HTAB because of (a) steric hinderance of its 
larger sized head group and (b) deeply embedded N

+
 

under three methyl groups (Zdziennicka and Jańczuk, 
2010).  

The CMC value of an ionic surfactant solution 
increases on raising temperature. However, opposite 
trend of temperature dependence of CMC was observed 
in case of non ionic surfactant solutions. The positive 
temperature coefficient of CMC for ionic surfactants may 
be due to (Sansanwal, 2005; Kye et al., 2001): (a) 
Dehydration of surfactant ionic head groups at elevated 
temperature resulting in a stronger repulsion of their ionic 
head; and (b) Shifting of monomer ⇌ micelle equilibrium 
in favour of monomer at higher temperature. The 
negative temperature coefficient of CMC in case of non 
ionic surfactant is due to phase separation referred to as 
clouding at higher temperature. 

The CMC values in pure water appear to be in good 
agreement with literature values (Das  and  Ismail,  2008; 

Hideki, 2009; Maria et al., 2005). On mixing ED or PT to 
an aqueous surfactant solution, an increase in CMC, 
irrespective of the nature of the surfactant, is observed 
(Tables 1 to 3). This may be because of lower dielectric 

constant of ED (  = 36, 298.15 K) or PT (  = 42.5, 298.15 

K) as compared to water (  = 78.36, 298.15 K). The 

decrease of dielectric constant ( ) of medium opposes 

micellization by increasing mutual repulsion of ionic 
heads in the micelle, hence increasing the CMC (Kabir-
ud-Din and Koya, 2011;). Increase in CMC on mixing ED 
to a surfactant solution, being more significant compared 
as to PT, is due to lower dielectric constant of the former. 
 
 
Counter ion association constant (α) 
 
The post micellar and pre micellar linear plot between 
specific conductivity and surfactant concentration is taken 
equal to counter-ion dissociation constant (β). The 
counter-ion association constant (α) is obtained using the 
relation: 
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Table 2. Critical micelle concentration (CMC), surface excess concentration (max), minimum area per molecule (Amin) and surface pressure at 

CMC (cmc) for aqueous HTAB solution with or without cosolvent systems. 
 

System T(K) 
CMC (m moldm

-3
) 

Α 
ΛO  × 10

-1 

(S cm
2
 mol

-1
) 

max  10
10 

(mol cm
-2
) 

Amin  10
2 

(nm
2
) 

cmc 

(mN m
-1
) *C *S *A 

HTAB + H2O 

298.15 0.92 0.88 0.90 0.77 19.49 1.78 93.29 32.23 

308.15 0.96 0.93  0.77 21.52 1.58 105.1 32.93 

318.15 1.08 0.99  0.76 24.89 1.47 112.9 32.01 
          

HTAB + ED(1M) + 
H2O 

298.15 0.98 0.97 0.97 0.75 82.53 1.09 158.0 35.33 

308.15 1.09 1.06  0.72 87.65 0.96 182.5 35.72 

318.15 1.25 1.20  0.70 94.47 0.91 198.4 36.06 
          

HTAB + ED(2.5M) + 
H2O 

298.15 1.26 1.23 1.22 0.68 112.4 0.90 184.5 36.27 

308.15 1.50 1.47  0.67 119.3 0.81 205.0 36.59 

318.15 1.76 1.65  0.67 124.7 0.72 230.6 36.70 
          

HTAB + ED(4M) + 
H2O 

298.15 1.51 1.45 1.49 0.65 115.9 0.84 197.7 37.15 

308.15 1.73 1.65  0.64 119.1 0.75 221.4 37.40 

318.15 1.97 1.90  0.62 123.4 0.67 247.8 37.68 
          

HTAB + PT(1M) + 
H2O 

298.15 0.95 0.94 0.95 0.76 21.30 1.47 112.9 34.65 

308.15 1.01 1.00  0.73 24.18 1.33 124.8 34.80 

318.15 1.15 1.08  0.71 28.04 1.19 139.5 34.95 
          

HTAB + PT(2.5M) + 
H2O 

298.15 1.02 1.00 0.99 0.66 19.98 1.31 126.7 35.08 

308.15 1.21 1.14  0.66 21.88 1.16 143.1 35.69 

318.15 1.49 1.45  0.71 24.82 1.03 161.2 35.50 
          

HTAB + PT(4M) + 
H2O 

298.15 1.29 1.27 1.32 0.64 17.40 1.19 139.5 36.07 

308.15 1.67 1.60  0.63 20.92 1.08 153.7 36.41 

318.15 1.81 1.76  0.64 24.31 0.97 171.2 36.75 
 

*C, *S,*A are CMC values obtained from conductance, surface tension and absorbance measurements respectively.  

 
 
 

                                (1)    

 
Counter-ion association values, as can be seen from 
Tables 1 and 2, for HTAB + H2O system are higher than 
that of SDS + H2O. At a fixed temperature, the α values 
roughly decreased with the cosolvent composition. An 
increase in α with respect to solvent composition is 
expected due to the decrease in the polarity of the bulk 
phase caused by the addition of cosolvents. That is, in 
order to diminish the repulsion between the ionic head 
groups, thus more fractions of the counterions would 
prefer to stay at the micellar surface (Kallol and Baghel, 
2008; Amalia et al., 2009). However, the opposite trend 
obtained could be due to decrease in average 
aggregation number (number of molecules present in a 
micelle) by the addition of cosolvents, which results in a 
diminution of the electrostatic repulsion (that overcomes 
the effect of polarity changes) and leads to a diminution 
in the electrical charge density at the micellar surface. 

With the increase in temperature, the α values of ionic 
surfactants in water and water–cosolvent mixtures are 
decreased. However, the effects of organic cosolvents on 

other systems were not always regular, although in some 
cases, a rough disorder can be seen (Zdziennicka and 
Jańczuk, 2010; Sarah et al., 2006). 
 

Equivalent conductance at infinite dilution ( ) 

 

Equivalent conductance ( ) of surfactant solutions were 

calculated as:  
 

                                               (2)                                                                       

 
Where, k is specific conductance and C is concentration 
in g equ/dm

3
. Equivalent conductance  

at infinite dilution  was obtained using Onsager 

equation (Dubey, 2008; Tine and Bešter-Rogac, 2007): 
 

                                        (3) 

 

Where A and B are  constants  that  explain  ion- ion  and  

http://en.wikipedia.org/wiki/Micelle
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Table 3. Critical micelle concentration (CMC), surface excess concentration (max), minimum area per molecule (Amin) and surface pressure at 

CMC (cmc) for aqueous Tween 80 solution with or without cosolvent systems. 
 

System T(K) 
CMC (m moldm

-3
) 

Α 
ΛO  × 10

-1 

(S cm
2
 mol

-1
) 

max  10
10 

(mol cm
-2
) 

Amin  10
2 

(nm
2
) 

cmc 

(mN m
-1
) *C *S *A 

Tween 80 + H2O 

298.15  0.018 0.020   1.91 86.94 19.55 

308.15  0.017    1.83 90.74 20.23 

318.15  0.015    1.82 91.24 20.62 
          

Tween 80 + ED(1M) 
+ H2O 

298.15  0.028 0.031   1.90 87.39 26.22 

308.15  0.025    1.85 89.76 26.56 

318.15  0.022    1.83 90.74 27.10 
          

Tween 80 + 
ED(2.5M) + H2O 

298.15  0.034 0.035   1.80 92.25 29.98 

308.15  0.032    1.70 97.68 30.22 

318.15  0.030    1.60 103.8 30.77 
          

Tween 80 + ED(4M) 
+ H2O 

298.15  0.038 0.040   1.78 93.29 32.85 

308.15  0.035    1.68 98.84 32.95 

318.15  0.034    1.58 105.1 33.15 
          

Tween 80 + PT(1M) + 
H2O 

298.15  0.025 0.028   1.89 73.15 24.21 

308.15  0.023    1.85 75.82 24.75 

318.15  0.019    1.84 77.59 25.51 
          

Tween 80 + PT(2.5M) 
+ H2O 

298.15  0.031 0.033   1.79 75.82 25.54 

308.15  0.030    1.74 81.40 26.70 

318.15  0.026    1.71 82.61 27.77 
          

Tween 80 + PT(4M) + 
H2O 

298.15  0.034 0.037   1.73 74.46 28.14 

308.15  0.031    1.70 77.23 28.58 

318.15  0.029    1.68 80.61 29.59 

*S,*A are CMC values obtained from surface tension and absorbance measurements respectively. 
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Figure 1. Plots of specific conductance (k) vs [SDS] for the system SDS + ED (1 M) + 

H2O.  
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Figure 2. Plots of surface tension (γ) Vs log [SDS] for the system SDS + PT (1M) + H2O. 
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Figure 3. Plots of absorbance (A) Vs [SDS] for the system SDS + BTB (saturated) + ED (1 

M) + H2O, at 298.15K. 
 
 
 

ion- solvent interaction parameters. It can be seen that 
(Tables 1 and 2) the observed positive temperature 

dependence of  values for ionic surfactant solutions is 

due   to   the   increase   of    ionic    mobility    at    higher  
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temperature. The  values for SDS + H2O system are 

lower than for HTAB + H2O system, because of higher 
degree of hydration of comparatively smaller head group 
as well as smaller counter- ion of SDS molecule 

compared to HTAB. The  values slightly increase on 

adding ED for the surfactant systems, but the reverse is 
true for the case of PT that may be due to enhanced 
intermolecular hydrogen bonding of the later with water 
and thus make the water structure more viscous and 

lower  (Yuksel, 2003; Radhouane et al., 2008).  

 
 
Surface physico-chemical properties 
 

Maximum surface excess concentration (max) values at 
the air-liquid interface has been obtained using Gibb’s 
adsorption equation (Huang et al., 1998; Partap and 
Yadav, 2008): 
 

                                   (4)                                  

 
Where n is the number of particles furnished by each 
molecule of the surfactant in the solution. Since SDS and 
HTAB behave as univalent electrolytes in aqueous 
solutions, therefore, for these surfactants the values n 
has been taken as 2. 

For nonionic surfactants n=1, R is the gas constant. 

  represents the slope of the surface tension 

versus log C plot below the CMC at temperature T. The 

calculated values for max for the studied systems at three 
temperatures are also presented in Tables 1 to 3. It may 

be seen that the max values decrease with the increase 
in temperature which may be due to the enhanced 
molecular thermal agitation at higher temperature (Partap 
and Yadav, 2008). 

These results are in conformity with results reported 
elsewhere (Yuksel, 2003; Islam and Kato, 2003). A 

further decrease in max values on mixing ED or PT may 
be due to the fact that addition of these cosolvents cause 
a partial displacement of surfactant molecules from the 
air-liquid interface to the bulk phase.  

The minimum area per molecule (Amin) of surfactant at 
the liquid-air interface (in nm

2
) was calculated using the 

relation (Huang et al., 1998; Partap and Yadav, 2008): 
 

                                                           (5) 

 
Where, N is Avogadro's number. Amin values for the 
studied systems are also given in the Tables 1 to 3, and 
for binary systems the values are in the order: HTAB > 
Tween 80 > SDS. An examination of these values reveals 
that Amin increases both with the increase in temperature 
as well as with the  concentration  of  ED  and  PT  in  the  

 
 
 
 
surfactant solution. This behavior can be explained in 
terms of the enhanced compatibility of surfactant with the 
solvent in the presence of cosolvents, thereby, causing a 
shift of surfactant molecules from air-liquid interface to 
the bulk phase (Kallol and Baghel, 2008; Sharma et al., 
1996). 

Surface pressure at CMC (cmc), an index of surface 
tension reduction at CMC, has been calculated using the 
equation (Tharwat, 2005; Yuksel, 2003): 
   

                                                     (6) 

 

Where 0 = surface tension of water and cmc = surface 

tension of surfactant solution at CMC.  values thus 

calculated for various systems are recorded in Tables 1 
to 3. An examination of the Tables clearly shows that 

CMC values for the studied systems vary in the order: 
HTAB > SDS > Tween 80. A similar order has been 
observed for the counter ion association constant (α) 
values for the former two. The surface pressure at CMC 
values are found to increase on adding a cosolvent for 
the studied ternary systems. This may be ascribed to the 
tendency of these organic cosolvents to adsorb at the air- 
liquid interface thereby lowering surface tension and 

hence increased CMC (Sansanwal, 2005). Further, CMC 

show marginal increase with increase in temperature. 
 
 
Thermodynamic properties of micellization 
 
Phase-separation and mass-action approaches present 
two models which have got wide acceptance for the 
interpretation of the energetics of micellization. For the 
ionic surfactants, however, the mass-action approach is 
usually preferred (Goodwin, 2004) and various 
thermodynamic parameters may be deduced from the 
temperature dependence of the CMC values. According 
to mass action model, the standard Gibbs free energy of 

micellization (G°mic) for ionic and nonionic surfactant 
solutions were calculated using equations 3.7 and 3.8 
respectively (Tharwat, 2005; Shaw, 1992).  
 

                                     (7) 

 

                                                 (8) 

 

Where, β is counter-ion dissociation constant, x is the 
surfactant mole fraction at CMC and R is gas constant 
(8.314 JK

-1
mol

-1
). The corresponding entropy and 

enthalpy of micellization were calculated from the 
following expressions respectively: 
 

                                             (9) 

 

                                     (10) 
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Table 4. Thermodynamic parameters of the micellization and adsorption for SDS system in aqueous and aqueous - cosolvent environment. 
 

System T(k) 
-G

0
mic (kJ 

mol
-1
) 

G
0

trans 

(kJ mol
-1

) 

H
0

mic 

(kJ mol
-1

) 

S
0

mic (kJ 
mol

-1
K

-1
) 

–G
0

ads 

(kJ mol
-1

) 

H
0

ads 

(kJ mol
-1

) 

S
0

ads(kJ 
mol

-1
K

-1
) 

SDS + H2O 

298.15 35.46 - -20.25 

0.051 

36.78 -17.40 

0.065 308.15 35.99 - -20.27 37.46 -17.39 

318.15 36.47 - -20.34 38.07 -17.39 
         

SDS + ED(1M) + H2O 

298.15 34.40 1.06 -24.26 

0.034 

36.25 -22.54 

0.046 308.15 34.56 1.43 -24.28 36.53 -22.36 

318.15 35.08 1.39 -24.36 37.16 -22.33 
         

SDS + ED(2.5M) + H2O 

298.15 34.05 1.41 -12.88 

0.071 

36.21 -23.99 

0.041 308.15 34.48 1.51 -12.60 36.84 -23.96 

318.15 35.46 1.01 -12.87 37.03 -23.92 
         

SDS + ED(4M) + H2O 

298.15 33.26 2.20 -21.93 

0.038 

36.01 -24.48 

0.040 308.15 33.87 2.12 -22.16 36.80 -24.47 

318.15 34.21 2.26 -22.22 37.01 -24.28 
         

SDS + PT(1M) + H2O 

298.15 35.00 0.46 -21.68 

0.044 

36.45 -18.56 

0.060 308.15 35.38 0.61 -21.82 37.01 -18.52 

318.15 35.87 0.60 -21.87 37.64 -18.51 
         

SDS + PT(2.5M) + H2O 

298.15 34.40 1.06 -20.69 

0.046 

36.91 -27.67 

0.031 308.15 35.65 0.34 -21.48 37.27 -27.72 

318.15 35.71 0.76 -21.58 37.52 -27.56 
         

SDS + PT(4M) + H2O 

298.15 34.02 1.44 -21.50 

0.042 

36.71 -22.70 

0.047 308.15 35.21 0.78 -22.28 37.00 -22.52 

318.15 35.65 0.82 -22.29 37.64 -22.49 

 
 
 

Further, the Gibbs energy of transfer values (G
0
trans), 

which can be accounted for the effect of cosolvent on the 
micellization process, was estimated through (Kabir-ud-
Din and Koya, 2011; Sharma et al., 1996): 
 

                       (11) 

 

Where,  and  stands for standard 

Gibbs free energy of micellization in water and water- 
cosolvent mixed media, respectively. 

Various thermodynamic parameters of micellization 
calculated using Equations (7) to (11) are presented in 

Tables 4 to 6. The  values in all the cases are 

negative and become less negative with the increase in 
the cosolvent content in the mixed media. At a fixed 
solvent composition, the values become slightly more 
negative with the rise in temperature. These values show 
that the micellization of surfactants in water- cosolvent 
(ED or PT) mixed media becomes less favorable when 
the solvent medium contains a higher amount of ED or 
PT, whereas an increase in temperature slightly favors 
the micellization.  

According  to  the  theory   of   surfactant   aggregation, 

proposed by Nagarajan and Wang (2000), there may be 
various types of energy contributions to Gibbs energy of 

micellization. Observed positive value of  

indicates that, it is responsible for the delay in the 
micellization of surfactants in the mixed media 
(Nagarajan and Wang, 2000) and their value depends on 
the transfer Gibbs free energies from pure water and the 
organic solvents in addition to their mutual interaction. As 
the addition of ED or PT modifies the bulk phase making 
it more favorable than pure water for dispersion of 
surfactant molecules, and the transfer of the hydrophobic 
tail from the bulk phase to the micellar region becomes 

less favorable, and hence value increases 

(becomes less negative). 

The standard entropy of micellization ) values 

(Tables 4 to 6) is positive for the studied systems 
suggesting that the process of micellization is favored by 

entropy gain (16).  for the studied aqueous micellar 

solutions are in the order: Tween 80 > HTAB >SDS. On 

adding ED or PT,   values decrease due to 

enhanced water structure in its presence owing to 
intermolecular hydrogen  bonding  (Homendra  and  Devi,  
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Table 5. Thermodynamic parameters of the micellization and adsorption for HTAB system in aqueous and aqueous - cosolvent environment. 
 

System T(k) 
-G

0
mic 

(kJ mol
-1

) 

G
0

trans 

(kJ mol
-1

) 

H
0

mic 

(kJ mol
-1

) 

S
0

mic (kJ 
mol

-1
K

-1
) 

–G
0

ads 

(kJ mol
-1

) 

H
0

ads 

(kJ mol
-1

) 

S
0

ads(kJ 
mol

-1
K

-1
) 

 

HTAB + H2O 

298.15 48.30 - -15.50 

0.110 

50.11 -11.95 

0.128 308.15 49.72 - -15.82 51.80 -11.86 

318.15 50.49 - -15.89 52.66 -11.94 
         

HTAB + ED(1M) + H2O 

298.15 47.48 0.82 -37.94 

0.032 

50.84 -27.29 

0.079 308.15 47.76 1.96 -37.90 51.68 -27.24 

318.15 48.11 2.38 -37.97 52.42 -27.19 
         

HTAB + ED(2.5M) + H2O 

298.15 44.53 3.77 -26.34 

0.061 

47.56 -28.78 

0.063 308.15 45.00 4.72 -26.40 49.52 -28.11 

318.15 45.75 4.74 -26.44 50.83 -28.71 
         

HTAB + ED(4M) + H2O 

298.15 42.99 5.31 -29.28 

0.046 

47.41 -15.81 

0.106 308.15 43.60 6.12 -29.43 48.58 -15.80 

318.15 43.91 6.58 -29.48 49.53 -15.81 
         

 

HTAB + PT(1M) + H2O 

 

298.15 

 

47.88 

 

0.42 

 

-34.46 
 

0.045 

 

 

50.23 

 

-28.17  

0.074 308.15 48.37 1.35 -34.50 50.98 -28.18 

318.15 48.78 1.71 -34.46 51.71 -28.17 
         

HTAB + PT(2.5M) + H2O 

298.15 44.87 3.43 -33.84 
0.037 

 

47.57 -29.99 

0.064 308.15 45.65 4.07 -34.25 49.72 -29.99 

318.15 47.61 2.88 -35.84 51.05 -29.69 
         

HTAB + PT(4M) + H2O 

298.15 43.37 4.93 -21.90 

0.072 

46.40 -13.60 

0.110 308.15 43.43 6.29 -21.94 47.80 -13.59 

318.15 44.81 5.68 -21.90 48.60 -13.60 

 
 
 

2006). On the other hand,  values for the studied 

systems are in the order: Tween 80 > HTAB > SDS. An 
exothermic standard enthalpy of micellization for ionic 
surfactants (SDS or HTAB) suggests that like entropy 
effect, the enthalpy change also favors the process of 

micellization. Positive values, owing to the 

hydrophobic-hydrophobic interaction of surfactant alkyl 
chain in the process of micellization (Partap and Yadav, 
2008), was observed for nonionic surfactant (Tween 80). 
Further, on adding a cosolvent (PT or ED) into surfactant 

solutions, there is decrease in   irrespective of 

their chemical nature, again due to its intermolecular 
hydrogen bonding with water. 
 
 
Thermodynamic properties of adsorption 
 

The standard free energy values of adsorption ( ) at 

the air- liquid interface (a measure of the free energy of 
transfer per mole of surfactant at unit concentration from 
bulk to the surface at unit pressure) were calculated 
using the equation (Huang et al., 1998;  Holmberg  et  al., 

2003): 
 

        (12) 

 

Where,  is in milliNewtons per meter. Values of 

 and  were obtained by using the 

corresponding Equations (13) and (14), respectively: 
 

                                              (13) 

 

                                       (14) 

 

The values of G°ads, H°ads and S°ads are also 

presented in Tables 4 to 6. The lower G
0
ads values 

compared to the corresponding G°mic suggests that the 
process of adsorption of surfactant molecules at the air- 
liquid interface proceeds the micellization in the bulk 

Standard Gibb’s free energy of adsorption values for 
studied binary systems are in the order:  SDS > Tween 
80 > HTAB. This order can be explained in terms of the 
order of  magnitude  of  their  intermolecular  head  group  
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Table 6. Thermodynamic parameters of the micellization and adsorption for Tween 80 system in aqueous and aqueous - cosolvent 
environment. 
 

System T(k) 
-G

0
mic 

(kJ mol
-1

) 

G
0

trans 

(kJ mol
-1

) 

H
0

mic 

(kJ mol
-1

) 

S
0

mic (kJ 
mol

-1
K

-1
) 

–G
0

ads 

(kJ mol
-1

) 

H
0

ads 

(kJ mol
-1

) 

S
0

ads(kJ 
mol

-1
K

-1
) 

Tween 80 + H2O 

298.15 37.04 - 7.09 

0.148 

38.06 7.56 

0.153 308.15 38.43 - 7.18 39.53 7.52 

318.15 39.99 - 7.20 41.12 7.56 
         

Tween 80 + ED(1M) + H2O 

298.15 35.94 1.1 6.70 

0.143 

37.42 7.60 

0.151 308.15 37.44 0.99 6.63 39.04 7.49 

318.15 38.99 1.00 6.51 40.63 7.41 
         

Tween 80 + ED(2.5M) + H2O 

298.15 35.46 1.58 5.09 

0.136 

37.29 7.43 

0.150 308.15 36.80 1.63 5.11 38.75 7.47 

318.15 38.17 1.82 5.10 40.28 7.44 
         

Tween 80 + ED(4M) + H2O 

298.15 35.18 1.84 4.47 

0.133 

37.19 6.64 

0.147 308.15 36.57 1.86 4.41 38.71 6.59 

318.15 37.84 2.15 4.47 40.13 6.53 
         

Tween 80 + PT(1M) + H2O 

298.15 36.22 0.82 7.91 

0.148 

37.43 5.21 

0.143 308.15 37.65 0.78 7.96 39.92 4.15 

318.15 39.37 0.62 7.72 40.70 4.80 
         

Tween 80 + PT(2.5M) + H2O 

298.15 35.68 1.36 7.85 

0.146 

36.98 9.23 

0.155 308.15 36.97 1.46 7.99 38.42 9.14 

318.15 38.55 1.44 7.90 40.08 9.23 
         

Tween 80 + PT(4M) + H2O 

298.15 35.84 1.20 0.218 

0.121 

37.23 1.88 

0.131 308.15 36.88 1.55 0.406 38.35 1.82 

318.15 38.26 1.73 0.436 39.84 1.84 

 
 
 
interaction at the air–liquid interface. Such interaction 
(repulsion) is highest in case of SDS. It has 
comparatively high degree of dissociation. Such head 
group interaction is least in case of HTAB due to steric 
hindrance of its comparatively larger head group. 
Addition of ED or PT leads to an increase (small 

negative) in G
0
ads for the studied surfactant solutions. 

This may be attributed to the enhanced hydrophobic 
(nonpolar) character of the bulk on adding cosolvents, 
which facilitates solubilization (Sibani et al., 2013; Meghal 
and Parikh, 2009) of surfactant monomers in the bulk and 
decrease feasibility of micellization process. 

The standard entropy of adsorption (S
0
ads) values are 

invariably positive and correspondingly larger than 

standard entropy of micellization (S
0
mic). This may be 

due to more degree of freedom of the surfactant 
molecules at the air-liquid interface compared to that in 
the cramped interior of micelle. Again, the endothermic 

(positive) standard enthalpy of adsorption,H°ads values 
observed for nonionic surfactant (Tween 80) may be due 
to the breaking of Hydrogen bonds between 
polyoxyethylene chain oxygen of surfactant and water 
molecules at the air-liquid interface (Hideki, 2009). Lastly, 

exothermic H
0
ads (for ionic surfactants, SDS and HTAB) 

and positive S°ads values suggest that the adsorption at 
air- liquid interface is favored by energy as well as 
entropy effect.  
 
 
Nature of BTB dye absorption spectra in micellar 
systems 
 
The absorption spectra of BTB in the presence of 
different concentration of the studied surfactant systems 
are shown in Figures 4 to 6. BTB in water (absence of 
any surfactant) shows a wavelength maximum at 433 nm. 
Addition of increasing concentration of surfactants with 
and without cosolvents led to a continuous decrease in 
absorbance at 433 nm. The absorption intensity at 433 
nm was decreased upon further increasing the 
concentrations of the surfactants at constant amount of 
the dye indicator. That is the micellar systems altered the 
characteristics of the dye indicator UV spectra. 

The shift in spectra is likely due to interactions between 
the indicators and micelles. That indicates, in micellar 
systems,  the  dye  taken  up   by   the  micelles   is  often  
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Figure 4. Absorption spectra of BTB (saturated) at various SDS 

concentration. [SDS]:  (a) 0, (b) 0.001 M, (c) 0.005 M, (d) 0.01 M + PT (1 
M), (e) 0.01 M + ED (1 M), (f) .02 M. 
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Figure 5. Absorption spectra of BTB (saturated) at various HTAB 

concentrations. [HTAB]:  (a) 0, (b) 0.1 mM, (c) 0.5 mM, (d) 1.0 mM, (e) 

1.5 mM, (f) 1.0 mM + PT (1 M), (g) 1.0 mM + ED (1M), (h) 2.8 mM. 

 
 
 
insufficient to produce high absorbance. A similar effect 
of micelles on UV spectra has been reported (Jebaramya 
et al., 2009). In addition to that, particularly for HTAB, 
new peaks were appeared at 623 nm, as shown in Figure 
5. Whereas absorption intensities at 623 nm are 
increased simultaneously with increasing the 

concentrations of HTAB. The development of the 623 nm 
band can be attributed to the conversion of the ion pair 
into a charge-transfer complex between the dye and 
micelle. Similar changes in the absorbance of the dye in 
the presence of oppositely charged surfactants have 
been reported in the past and have been attributed to  the  
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Figure 6. Absorption spectra of BTB (sat.) at various Tween 80 

concentrations. [Tween 80]:  (a) 0, (b) 0.005 mM, (c) 0.01 mM, (d) 
0.02 mM + PT(2.5 M), (e) 0.02 mM + ED (2.5 M), (f) 0.02 Mm, (g) 0.06 
mM. 

 
 
 
formation of an ion-pair complex (Garcia et al., 2007). But 
as the surfactant concentration increases beyond the 
CMC, the absorbance of two bands (433 and 623 nm) 
progressively decreases with the appearance of the main 
dye absorption band. This indicates that the dye–
surfactant complex is unstable in the micellar region, 
where the surfactant molecules tend to aggregate to form 
the micelles. The spectral changes of dye in micellar 
media have been suggested to be due to electrostatic 
interactions between oppositely charged molecules. It 
has been reported in the literature that the ionic dyes can 
form molecular complexes with oppositely charged 
micelles (Garcia et al., 2007). It has also been shown that 
aromatic compounds with sulfonic acid groups are 
incorporated into the Stern layer of cationic micelles in a 
sandwich arrangement. A van der Waals interaction 
between adjacent surfactant chains and the dye organic 
moiety (hydrophobic forces) changes the chromophore 
microenvironment (Jebaramya et al., 2009). The evidence 
that the interaction is due to oppositely charged molecules 
also comes from the fact that similarly charged dye-micelle 
systems have shown the absence of such spectral changes. 
 
 
Conclusion  
 
From the results obtained, it is possible to reach the 
following conclusions: Both the addition of cosolvents 
(ED or PT) and rise in temperature results in an increase 
in the critical micelle concentration (CMC) and degree of 
counterion dissociation constant (β) for ionic surfactants. 

However, CMC of Tween 80 shows a negative 
temperature coefficient. Again, slight increase in CMC 
and β values of studied surfactant solutions, irrespective 
of their chemical nature, on mixing ED was observed 

compared to PT. Lower  of surfactants in mixed 

solvent containing PT compared to that containing ED 
suggest more feasibility of micellization on increasing 
hydroxy groups in a polyol. From the observed surface 

properties namely surface excess concentration (max), 
minimum area per molecule (Amin) and surface pressure 

at CMC (cmc): a long chain cationic surfactant (HTAB) 

has relatively higher cmc and Amin values. On the other 

hand, SDS and Tween 80 have higher max values. 

Further, enhancement of cmc and Amin values, and 

reduction of max value have been observed in the 
presence of studied cosolvents.  For ionic surfactant 
solutions, with or without a cosolvent, micellization in the 
bulk and adsorption at the air- liquid interface are favored 
by exothermic enthalpy change as well as entropy gain. 
And, with the increase in the concentration of cosolvents 
in the mixed medium, micellization becomes less 
favorable. Therefore, on the basis of observed effect of 
added cosolvents (ED and PT) on CMC, surface physico-
chemical properties and thermodynamic property of the 
studied systems, The author suggest that, addition of 
these cosolvents (ED or PT) would be beneficial in 
metallurgical process such as concentration of ores by 
froth floatation and other industrial application. However, 
they are less effective as oil spill dispersant and in 
detergency process. 
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The work analyzes the compatibility between the classical freedom, the local relativistic causality and 
the non-local behavior of quantum mechanics in the frame of the stochastic approach of the quantum 
hydrodynamic analogy (SQHA). The work describes the role of the quantum potential in generating the 
quantum non-local dynamics in a fluctuating environment. The analysis shows that it is possible to 
maintain the concept of classical freedom between far away weakly bounded systems (moderate non-
locality) as well as to make compatible the uncertainty principle with the relativistic postulate of 
invariance of light speed. The work shows that the paradox of instantaneous quantum non local 
behavior at infinite distances of the standard formalism is an artifact due to the non-relativistic non-
stochastic ambit of such theory where the light speed is infinite and the non-local interaction owns an 
infinite range of action. The work envisages that the SQHA can possibly lead to a fully theoretically self-
standing quantum mechanics where the wave function collapse, during a measurement process, can be 
described by the theory itself without empirical postulates. Under this light the paper discusses the 
need of searching for (both local and non-local) hidden variables quantum mechanics as well as the 
need of superluminal communications in quantum experiments. The analysis shows that all these 
hypotheses are attempts of interpreting the outputs of quantum measurements that cannot be fully 
explained by the semi-empirical formalism of quantum mechanics, based on the statistical postulates of 
the measuring process as well as the existence of a classical observer. A two photon experiment is 
discussed to the light of the SQHA approach. 
 
Key words: Quantum non-locality, superluminal transmission of quantum information, classical freedom, local 
relativistic causality,  Einstein, Podolsky, and Rosen (EPR) paradox, macroscopic quantum decoherence, Bell’s 
inequalities, quantum hydrodynamic analogy. 

 
 
INTRODUCTION 
 
The conflict between the quantum non-locality and the 
local character of the classical macroscopic experience is 
one of the most intriguing problems of the modern 
physics (Schrödinger, 1935; Einstein et al., 1935; Bell, 
1964; Greenberger et al., 1990).  

This fact has lead to many logical paradoxes that contrast 
with our sense of reality (Schrödinger, 1935; Einstein et 
al., 1935; Bell, 1964). The most known quantitative 
tentative to investigate the problem is given by Bell 
(1964) in response to the so called EPR paradox (Einstein 
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et al., 1935) a critical analysis of the quantum non-locality 
respect to the notion of macroscopic classical freedom 
and local relativistic causality.  

The central point of the problem is the leaking of the 
theoretical connection between the quantum mechanics 
and the classical one that would explain how the laws of 
physics pass from the quantum behavior to the classical 
one. The disconnection between the two theories leaves 
open the question about the hierarchy between them. 
The quantum mechanics, on the base of its semi-
empirical statistical approach, needs the classical 
mechanics (that is, the classical observer) to be defined, 
while the quantum one seems to be the basic one from 
which the classical mechanics can stem out in the 

macroscopic limit where h  tends to zero (Bialyniki-Birula 
et al., 1992).  

One current of thought is represented by the 
“deterministic” approach to quantum mechanics that 
analyzes how the quantum equations are the 
generalization of the classical one (Bialyniki-Birula et al., 
1992; Bohm, 1952; Madelung, 1926; Jánossy, 1962; 
Jánossy, 1962; Wyatt, 2005; Nelson, 1967, 1985; Guerra 
and Ruggero, 1973; Parisi and Wu, 1981) where the non-
locality is introduced in various ways, the Madelung 
quantum potential (Bialyniki-Birula et al., 1992; 
Madelung, 1926; Jánossy, 1962), the Nelson’s osmotic 
potential, the Bohm-Hylei quantum potential or the Paris 
and Wu fifth-time parameter.  

A great help in explaining the origin of the non-locality 
of quantum mechanics comes from the QHA equations 
(Bialyniki-Birula et al., 1992; Madelung, 1926; Jánossy, 
1962) that shows how the non-local restrictions come in 
the playing from the quantization of vortexes (Bialyniki-
Birula et al., 1992) and by the elastic-like energy arising 
by the quantum pseudo-potential. On the contrary, the 
Schrödinger equation is a differential equation where the 
non-local character of evolution is determined by the 
initial and boundary conditions that must be defined for 
describing a physical problem and that are apart from the 
equation.  

In the case of charged particles, the non-local 
properties of the Schrödinger equation come also from 
the presence of the electromagnetic (EM) potentials that 
depend by the intensities of EM fields in a non-local way 
(e.g., Aharonov –Bohm effect) (Wyatt, 2005). In the 
corresponding hydrodynamic equations (Bialyniki-Birula 
et al., 1992) the EM potentials do not appear but only in 
local way through the strength of the EM fields. The 
mathematically more clear origin of the quantum 
restrictions in the QHA make it suitable for the 
achievement   of    the    connection   between    quantum 

 
 
 
 
concepts (probabilities) and classical ones (e.g., 
trajectories) (Wyatt, 2005) helping in overcoming the 
contrast between the quantum non-local behavior and 
our classical sense of reality. 

The deterministic approach of the QHA and similar 
theories gains interest in the physics community due to 
the fact that it helps in explaining quantum phenomena 
that cannot be easily described by the usual formalism. 
They are multiple tunneling (Jona et al., 1981), critical 
phenomena at zero temperature (Ruggiero and Zannetti, 
1981), mesoscopic physics (Ruggiero and Zannetti, 
1983a, b; Chiarelli, 2013a), numerical solution of the 
time-dependent Schrödinger equation (Weiner and 
Askar, 1971; Weiner and Forman, 1974; Terlecki et al., 
1982), quantum dispersive phenomena in 
semiconductors (Gardner, 1994), quantum field 
theoretical regularization procedure (Breit et al., 1984) 
and the quantization of Gauge fields, without gauge fixing 
and without ensuing the Faddeev-Popov ghost 
(Zwanziger, 1984).  

On the theoretical point of view, one of the most 
promising aspect of this model is helping in investigating 
the quantum mechanical problems using efficient 
mathematical technique such as the stochastic calculus, 
the numerical approach and the supersymmetry.  

A more recent and sophisticated approach is given by 
t’Hooft (1988, 1996, 1999). He proposes the obtaining of 
the quantum mechanics through a process of loss of 
information by using outputs coming from the black-hole 
thermodynamics and by the so called holographic 
principle (Susskind et al., 1993; Bousso, 2002). 

A parallel current of thought, investigates the 
possibility of obtaining the classical state through the 
loss of quantum coherence in classically chaotic 
systems due to the presence of stochastic fluctuations 
(Cerruti et al., 2000; Calzetta and Hu, 1995; Wang et al., 
2008; Lombardo and Villar, 2005; Mariano et al., 2001). 
In this case, most of the results are obtained by 
numerical and semi-empirical approaches, leaking of 
global theoretical view. 

The present paper investigates the non-local property 
of quantum mechanics and its decoherence as a 
consequence of fluctuations by using the QHA (Madelung, 
1926; Jánossy, 1962; Wyatt, 2005) implemented with the 
stochastic calculus. This strategy is supported by the 
advantage of the QHA in managing the non-local 
quantum dynamics in system larger than a single atom 
when fluctuations becomes important (Bousquet et al., 
2001; Morato and Ugolini, 2011; Chiarelli, 2013b) and by 
its completeness respect to the Bohmian mechanics 
(Chiarelli, 2012; Bohm and Vigier, 1954).  
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Stochastic generalization of the quantum 
hydrodynamic analogy 
 
The QHA-equations are based on the fact that the 
Schrödinger equation, applied to a wave function 

]S
i

[exp|| (q,t)(q,t)(q,t)
h

ψψ = , is equivalent to the motion 

of a particle density (q,t)(q,t) ||
2

n ψ=  with velocity 
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S
q

)t,q(∇
=

•

 (Bialyniki-Birula et al., 1992). In presence 

of stochastic noise )T,t,q(η , that for the sufficiently 

general case, to be of practical interest, can be assumed 
Gaussian with null correlation time, the stochastic partial 

differential conservation equation for (q,t)n  reads 

(Chiarelli, 2013b): 
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where T is the noise amplitude parameter (e.g., the 
temperature of an ideal gas thermostat put in equilibrium 

with the system (Chiarelli, 2013b) and )(G λ  is the 

shape of the spatial correlation function of η .  
The noise spatial correlation function (7), is a direct 

consequence of the derivatives present into the quantum 
potential that give rise to an elastic-like contribution to the 
system energy that reads (Weiner, 1983): 
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where a large “curvature” of  t)(q,
n   leads  to  high  quantum  
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potential energy. This can be easily checked by calculating 

the quantum potential of the wave function qcos
λ

π
ψ

2
=  

that reads: 
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Showing that the energy increases as the inverse 

squared of the distance λ  between two adjacent peaks 
(that is, the wave length). In the stochastic case, given 

Gaussian fluctuations with correlation distance λ , (9) 
represents the energy of the frequency mode associated 
to the closest independent fluctuations. 

Therefore, independent fluctuations of particle density (PD) 

very close each other (that is, 0→λ ), generating very high 

curvature on the density t)(q,
n , can lead to a whatever large 

quantum potential energy even in the case of vanishing 

fluctuations amplitude (that is, 0→T ).  
In this case, fluctuations with infinitesimal amplitude (that is, 

0→T ) and diverging energy content, can lead to a finite 
quantum potential energy contribution even in the limit of T=0 
forbidding the convergence of equations (1-7) to the 
deterministic limit (Bialyniki-Birula et al., 1992) (that is, the 
standard quantum mechanics).  

Therefore, in order to eliminating these unphysical 
solutions, the additional conditions (7) come into the set of the 
equations leading to physically coherent stochastic 
generalization of quantum mechanics (Chiarelli, 2013b).  

If we require that ∞<quH (following the criterion that 

higher is the energy lower is the probability to reach the 
corresponding state (that is, state with infinite energy have 
zero probability to realize itself) it follows that independent 

fluctuations of the density t)(q,
n  on shorter and shorter 

distance are progressively suppressed (that is, have lower 
and lower probability of happening). This physical effect due 
to the quantum potential (that confers to the particle density 
function the elastic behavior like a membrane, very rigid 
against short range curvature) imposes a finite correlation 
length to the possible physical fluctuations.  

In the small noise limit (Chiarelli, 2013b) the suppression 
of PD fluctuations on very short distance, due to the finite 
energy requirement, brings to a restriction on the correlation 

length of the noise itself cλ  in (7) (Chiarelli, 2013b) that 

reads: 
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leading to explicit form of the variance (2) (Chiarelli, 
2013b). 
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Where µ  is a constant with the dimension of a migration 
coefficient.  
Furthermore, in the case of very small noise amplitude, 
due to the constraints (11), the action (6), can be re-cast 
in the form (Chiarelli, 2013b): 
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Where Sδ  is a vanishing small fluctuating quantity 
(Chiarelli, 2013b). 
 
 
Non-local property of quantum potential in presence 
of noise 
 
The quantized action depends by the values of the 
quantum potential related to the corresponding 
eigenstates (that is, stationary states). On the other hand, 
the eigen values are determined by the quantum potential 
that has to neutralize the force deriving by the 
Hamiltonian potential (Appendix A). Since this condition 
must happen in all points of the space the dynamics of a 
generic quantum state is clearly non-local.  

If we consider a bi-dimensional space, the quantum 
potential makes the particle density function acting like an 
elastic membrane that becomes quite rigid against ripples 
with very short wave length.  

Given that the force of the quantum potential in a point 
depends by the state of the system around it, it 
introduces the non-local character into the motion 
equations. For this reason, the quantum non-local 
properties can be very well identified and studied by 
means of the analytical mathematical investigations of 
the property of the quantum potential in Equation (5). 

In order to analytically detail what happens in the 
macroscopic case, mathematically speaking, we observe 
that the quantum force (equal to minus the gradient of the 
quantum potential) cannot be taken out by the 
deterministic limit of Equation (1) as intuitively proposed 
by many authors (Bialyniki-Birula et al., 1992; Weiner, 
1983) because this operation will wipe out the quantum 
stationary states (that is, quantum eigenstates) deeply 
changing the structure of such equation.  

The presence of the QP is needed for the realization of 
the quantum eigenstates that happen when the force of 
the QP  exactly  balances  the  Hamiltonian  one.  On  the  

 
 
 
 
contrary, in the stochastic case, when we deal with large-

scale systems with physical length cλ>>L  submitted to 
fluctuations, in weakly interacting systems we can have a 
vanishing small quantum force at large distances 
(Appendix B) (Chiarelli, 2013a, b) that, becoming much 
smaller than fluctuations, can be correctly neglected in 
the motion equations. 

It must be underlined that not all types of interactions 
lead to a vanishing small quantum force at large distance 
(a straightforward example is given by linear systems 
where the quantum potential owns a quadratic form 
(Appendix B, sections B.1-B.2) (Chiarelli, 2013a, b, c, d).  

Nevertheless, there exists a large number of non-linear 
long-range weak potentials (e.g., Lennard Jones types) 
where the quantum potential tends to zero (Appendix B) 
at infinity and can be neglected (Chiarelli, 2013c). In this 
case a rarefied gas of such particles having the mean 
particle distance much larger that the quantum potential 
range of interaction (Chiarelli, 2013a, b) behaves as a 
classical phase.  

Following we analyze the large scale form of the SPDE 
(1) for asymptotically vanishing quantum potential with 

finite range of interaction qλ  (24, B.5).  

In order to investigate this point, let’s consider a system 
whose Hamiltonian which reads: 
 

)q(V
m

p
H +=

2

2

,                        (13) 

 
in this case the QHA equations (Bialyniki-Birula et al., 
1992;) (that is, the deterministic limit of (17)) can be 
derived by the following phase-space equation: 
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by integrating equation (14) over the momentum p with 
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constraint on the quantum phase space density ρ  (a 
Wigner-like function): 
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in the quantum mechanics limit and the correspondence 
rule: 
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between the quantum hydrodynamic model and the 
Schrödinger equation (Bialyniki-Birula et al., 1992; 
Weiner, 1983).  
When a spatially distributed random noise is present, 
Equation (17) has the corresponding phase space SPDE 
that reads  
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whose zero noise limit is the deterministic PDE (14). Near 
the deterministic limit, in the case of Gaussian noise (2), 
it is possible to re-cast (20) as: 
 

)Sp()x())xx(( )T,t,q(qut),(q,p)(qut),(q,pt),(q,pt H
∇−+−∇=+∇+∂

•

•

••

• δηδρρρ ρ0
,(21) 

 

where 0ρ  is the solution of the deterministic QHA 

equations and where )V,(x ququ δδ −∇=
•

0 , where: 

 

)(qu)(qu

qu

VV

}){
m

(V
////

0

21212121

nn

00

2

           

nnnn
2

−=

∇∇−∇∇−= •
−

•
−h

δ
.     (22) 

 

where pd
n

t),(q,p(q,t)
3

00  n ∫∫∫= ρ . 

Thanks to conditions (7, 10) (Chiarelli, 2013b), closer 
and closer we get to the deterministic limit (that is, 

∞→
L

cλ
, whereL  is the physical length of the system) 

, smaller and smaller is the amplitude of the random term 
on the right side of (21):  
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When ∞→
L

cλ the standard quantum mechanics is 

achieved and the quantum potential cannot be 
disregarded from the hydrodynamic quantum motion 
equations.  
 
 
Large-scale classical behavior in non-linear 
asymptotically weakly-bonded systems 
 

On  the  contrary,  when  L<<cλ ,  in  weakly  bounded  
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system when the force steaming from the quantum 
potential at large distance tends to zero it is possible to 
coherently define a measure of the quantum potential 

range of interaction qλ  that reads (Chiarelli, 2013b): 

 

)cq(

qu

qu

cq

|
q

V
|

dq|
q

V
q|

λ

λλ

=

−

∂

∂

∞

∂

∂

=
∫

 

 
0

1

2
,                                 (24) 

 

When ℜ∈< kqλ  the quantum potential becomes 

much smaller than its fluctuations at large distance ad it 
can correctly be disregarded by the equation of motion. 

Thence, when 0→
L

qλ
it follows that: 
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For sake of completeness, we observe that close to the 
deterministic limit (that is, to the quantum mechanics) 

when cλ<L  the quantum potential cannot be 
disregarded even if it is vanishing small, therefore the 

quantum potential range of interaction qλ  is physically 

meaningful if, and only if, cq λλ > . For cq λλ < the 

quantum potential range of interaction must be retained 

equal to cλ . 

Introducing (25) into equation (21), for cq λλ ≥>>L , 

it follows that: 
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equal to the proton mass cT  can be as low as 3°K) in 

weakly bounded with system cq λλ ≈ ( Chiarelli, 2013a) 

the stochastic phase space PDE (26) reads: 
 

)t,q(t),(q,pt),(q,pt X))x((
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where )t,q(X is a stochastic (sufficiently small quantity) 

giving rise to classically fluctuating dynamics that do not 
own eigenstates.  

Physically speaking, the central point in weakly 
quantum entangled systems, whose characteristic length 

L  is much bigger than the quantum potential range of 

interaction qλ , is that the stochastic sequence of 

fluctuations of the quantum potential does not allow the 
coherent reconstruction of the superposition of state 
since they are much bigger than the quantum potential 
itself. In this case (especially in classically chaotic 
systems) the effect of the quantum potential with 
fluctuations on the dynamics of the system is not equal to 
the effect of its average (even in the unlikely case of 
fluctuations have a null time mean). 

If the quantum potential can be disregarded in the large 
scale description, the action (12) reads: 
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and hence, the momentum of the solutions given by the 

δ-function in Equation (18) (that is, ( ) )SSp( cl δδ +∇−  

approaches the classical value (plus a fluctuation) and 
reads: 
 

( ) ppSSp clcl δδ +=+∇=                       (30) 

 

Observing that the quantum coherence length cλ  results 

by the geometrical mean of the stochastic length 
kT

ch
 (of 

order of unity or less, (about 1,44 cm at 1°K )) and the 

Compton length 
mc

lC
h

=  (the reference length for the 

standard quantum mechanics) it follows that the 
description of a macroscopic system (with a resolution 

q∆ such as L<<∆< q,l, qCc λλ ) can behave 

classically stochastic at laboratory scale, even at low 

temperature, since for cT  as small as the temperature  of 

 
 
 
 
the background radiation 2,725°K, it results 

mx.)
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cl
(

/C
c
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21 −=∝
h

λ  for a particle of proton 

mass (or mxc
9103 −≈λ at a temperature of 300°K)).  

Even if the condition qqc ∆<< λλ  is usually satisfied 

for macroscopic objects constituted by Lennard-Jones 
interacting particles, there also exists (at laboratory 

condition) the possibility to have qq λ<∆ and, hence, to 

detect quantum phenomena.  
The most direct and immediate example is given by 

observables depending by molecular properties of solid 
crystals that, due to the linearity of the particles 
interaction, can own a very large quantum potential range 

of action qλ (that may result of order of ten times of the 

atomic distances (Chiarelli, 2013a).  
Another possibility is to refrigerate a fluid below its 

critical density (if it does not undergo solidification) in 
order to obtain that the mean molecular distance 

becomes smaller than pλ or/and cλ  (Chiarelli, 2013b).  

Even if the linear systems are the most studied and 
known ones, those characterized by non-linear weak 
interactions, to which equation (28) can apply, are more 
wide-spread in nature.  

For instance, equation (28) can apply to the case of a 
rarefied gas phase of Lennard-Jones potential interacting 

particles where the mean inter-particle distance d  is 

much bigger than qλ  and cλ  (for instance for the helium 

at room temperature it results cmx.qc
81060 −≈≈ λλ  

and cmxd
7

106
−≈ ). In this case, the quantum 

superposition of states of molecules (or group of them) 
does not exist so that the macroscopic gas system 
behaves classically. 

A deeper analysis (Chiarelli, 2013a), shows that the 
classical behavior of molecules of a real gas is 
maintained down to the density of liquids. On the 
contrary, due to the linearity of intermolecular forces in 
solid crystals, qλ  becomes bigger than the mean inter-

particle distance (Chiarelli, 2013a) and the quantum 
behavior of groups of atoms is maintained. Nevertheless, 
since the linear interaction of solids ends over a certain 
distance, the quantum behavior survives just in 
phenomena depending by the molecular scale (e.g., 
Bragg’s diffraction). 

The quantum macroscopic state of a body made of 
weakly interacting particles like ordinary molecules does 
not have any physical existence in a noisy environment. 
 
 
COMPATIBILITY BETWEEN THE LOCAL 
RELATIVISTIC CAUSALITY AND THE (NON-LOCAL) 
QUANTUM UNCERTAINTY RELATIONS IN THE 
FRAME OF THE SQHA 
 
If in  the  classical  macroscopic  reality  we  try  to  detect  



 

 
 
 
 
microscopic variables, below a certain point the wave-
particle dual properties of bodies emerge thanks to the 
quantum potential effect. In the classical approach the 
particle concept owns the characteristic that position and 
velocity are perceived as independent. On the other 
hand, on microscopic scale the wave property of the 
matter (e.g., the impossibility to interact just with a part of 
the system without entirely perturbing it) leads to the 
coupling between conjugated variables such as position 
and velocity (Oppenheim and Wehner, 2007). If we 
increase of spatial confinement of the wave function, an 
increase of the quantum potential energy (due to the 

overall increase of derivatives of n1/2 ) is produced. This 
fact leads to possible higher particle momentum values in 
the following measurements. 

The scale-dependence of the quantum potential 
interaction leads the classical perception of the reality 

until the resolution size q∆  is at least larger than the 

quantum coherence length cλ .  

Moreover, we observe that higher is the amplitude of 

the noise T , smaller is the length cλ and, hence, higher 

is the attainable degree of spatial precision within the 
classical scale. On the other hand, higher is the 
amplitude of noise, higher are the fluctuations of 
observables such as the velocity and/or energy. In the 
frame of the SQHA, it is straightforward to show that 
these mutual opposite effects on conjugated variables 
are the basis of the Heisenberg principle of uncertainty. 
In fact, by using the quantum stochastic hydrodynamic 
model, it is possible to derive the relation between the 

time interval t∆  of a measurement and the related 
variance of the energy on a particle of mass m. 

If on distances smaller than cλ any system behave in 

quantum mode (as a wave) so that any its sub-parts 
cannot be perturbed without disturbing all the entire 
system, it follows that the independence between the 
measuring apparatus and the measured system 
(classical freedom) requires that they must be far apart, 

at least, more than
2

cλ
and hence for the finite speed of 

propagation of interactions and information (local 
relativistic causality (LRC)) the measure process must 

last longer than the time 
c

cλ
τ = . 

Moreover, given that the noise )T,t,q(η  in (13) in the 

small noise limit (that is, T  sufficiently small) leads to 
Gaussian energy fluctuations (Chiarelli, 2013b), it follows 
that the mean value of the energy fluctuation for each 

degree of freedom of a particle is kTE )T(
2

1
=∆  

(Ozawa, 2003)  and  thence,  in  the   non-relativistic  limit  
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( kTmc >>2 ) for a particle of mass m, the energy 

variance E∆  reads: 
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  (31) 

 
from which it follows that (Chiarelli, 2013b; Ozawa, 2003) 
 

h==∆∆>∆∆
c

)kTmc(
EtE c

/

2

2
212 λ

τ .                  (32) 

 

It is worth noting that the product τ∆∆E  is constant 
since the growing of the energy variance with the square 

root of the temperature 
2122 /)kTmc(E ≈∆ is exactly 

compensated by the decrease of the minimum time of 
measurement: 
 

212
2

/
)kTmc(

h
∝τ                                     (33) 

 
furnishing an elegant physical explanation why the 
Heisenberg relations exist in term of a physical constant.  

The same result is achieved if we derive the uncertainty 
relation between the position and the momentum of a 
particle of mass m.  

If we measure the spatial position of a particle with a 

precision of cL λ>∆2  so that we do not perturb its 

quantum wave function (that, due to environmental 
fluctuations, is spontaneously localized on a spatial 

domain of order of cλ ) the variance p∆ of the modulus 

of its relativistic momentum mc)pp(
/ =21

µ
µ

 due to 

the vacuum fluctuations reads: 
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leading to the uncertainty relationship 
 

h==∆>∆∆ 21
2

22

/cc )mkT(ppL
λλ

          (35) 

 
If we impose measuring the spatial position with a 

precision cL λ<∆2 , we have to localize the quantum 

state of the particle more than what is spontaneously is.  
Since quantum potential realizes the particle-wave 

equivalence, the wave-function localization and 
momentum variance are submitted to the properties of 
the Fourier transform relationships (holding for any wave 
system): The uncertainty relations remain satisfied 
anyway we try  to  localize  the  wave  function  (either  by  
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environmental fluctuations or by physical means (that is, 
external potentials).  
 
 
Connections between the uncertainty relations and 
local relativistic causality 
 
In the frame of the SQHA, particles are necessarily 
correlated each other until they are separated by a 

distance smaller than cλ , the distance over which the 

wave function is governed by quantum law (they still may 
present quantum correlations (stochastic influenced) until 

they are separated by a distance up to qλ , but in this 

case we do not have quantum entanglement as 
described by the standard (deterministic) quantum 
mechanics).  

If two particles are quantum entangled, when the 
measurement on one of the two is performed (so that the 
global wave-function collapses to an eigenstate) in the 
context of the SQHA model, we are in presence of a 
kinetic (irreversible) evolution toward a stationary state 
(eigenstate) (SQE) with its characteristic (not null) time 

cτ .  

If we assume the Copenhagen interpretation of 
quantum mechanics, so that the measurement process 
ends when the wave function is collapsed to the 

eigenstate, the “quantum relaxation” interval of time cτ  

represents the minimum time of measurement. In this 
case, the compatibility of the SQHA (that is, of the 
quantum mechanics) with the local relativistic causality 

implies that it must be
c

c
c

λ
ττ =>  (or at least 

c

c
c

2

λ
τ >  if 

the wave function decoherence starts from the center 
toward the border).  

From experimental point of view, in order to 
demonstrate that the local relativistic causality (LRC) 
breaks down in quantum processes, it needs to 

demonstrated that the decoherence time cτ  is so short 

that the wave function collapse to the eigenstate is faster 

than the light to travel the radius 
2

cλ
over which the 

quantum entangled state extends itself and hence, it is 

sufficient to demonstrate that 
c

c
c

2

λ
τ <  . 

Given that, by introducing (10) in (31) in presence of 
environmental energy fluctuations it holds: 
 

E

c
c

∆
=

h2
λ                (36) 

 

and hence h<∆ cEτ , it follows that, in the SQHA model  

 
 
 
 
(that is, low speed limit), the violation of the Heisenberg 
uncertainty principle necessarily involves the LRC 
breaking and (for microscopic systems with characteristic 

length cλ<L ) vice versa. 

The same conclusion is achieved if, by using external 
means, we confine the wave function in a region of length 

cL λ<∆ . 

 
 
RELATIVISTIC APPROACH 
 
The SQHA approach is the classical limit of the 
corresponding relativistic model. In such low velocity limit 
model, the light speed goes to infinity and hence the 
compatibility with the RLC can be checked just showing 
that the uncertainty relations are compatible with the 
requirement of finite speed of interactions.  

Even if the stochastic generalization of the quantum 
relativistic hydrodynamic approach is still not available, 
from the hydrodynamic representation of the Dirac 
equation (Chiarelli, 2014a) we can inspect the Lorentz 
invariance of the relativistic quantum potential that can 
enforce the hypothesis of compatibility between the LRC 
and the quantum non-locality. The relativistic quantum 
potential allows verifying if the non-local interactions that 
it introduces into the quantum equation of motion 
propagate themselves compatibly with the postulate of 
the relativity about the invariance of light speed as the 
fastest way to which signals and interactions can be 
transmitted. 

Since the invariance of light speed is the generating 
property of the Lorentz transformations, the co-variant 
form (that is, invariant 4-scalar product) of quantum 
potential that reads (Chiarelli, 2014b): 
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where iΨ  are the components of the bispinor 4-

dimensional wave function  
 

( )4321 ΨΨΨΨ=Ψ ,,, , 

 

and where 
µγ are the 4x4  matrices  derived  by  the  2x2  



 

 
 
 
 
Pauli matrices (Bialyniki-Birula et al., 1992), united to the 

property of the 4-dimensional wave function Ψ that 
changes accordingly with the Lorentz transformation, 
allows affirming that the quantum non-local behavior 
(deriving by the quantum potential) is compatible with 
such a postulate of the relativity. 

In fact, whatever inertial system we choose moving with 
velocity v < c, the quantum potential expression (37) 
describes the quantum dynamics as realize themselves 
in such new reference system (where the light speed is 
always c and hence not attainable). This fact forbids that 
in any inertial system the time difference between the 
initial conditions (e.g., starting of measurement (that is, 
cause)) and the final one (wave collapse (that is, effect)) 
is null (or negative) so that the quantum-potential action 
on the whole wave function cannot realize itself in a null 
time. 

This result enforces the hypothesis that any 
measurable quantum non-local process (even involving a 
large distance) is compatible with the postulate of 
invariance of light speed as the fastest way to which 
signals and interactions can be transmitted. 

The paradox of instantaneous non local quantum action 
at infinite distances is, hence, an artifact that appears in 
the non-relativistic non-stochastic theories of quantum 
mechanics due to the fact that the light speed tends to 
infinity and the non-local interaction own an infinite range 
of action.  

 
 
COMMENTS ABOUT THE SQHA MODEL 
 
In the frame of the stochastic QHA the achievement of 
the classical characteristics of physical reality (Einstein et 
al., 1935) such as the classical freedom and local 
relativistic causality is realized as a large-scale effect in 
systems of asymptotically weakly bounded particles.  

As far as the resolution limit of the classical description 
is much larger than the length over which the wave 
(quantum) properties of the matter can be detected, the 
classical concepts are not contradicted. When we deal 
with observables of microscopic systems, the quantum 
properties arise since the quantum potential (that is, the 
wave property of the matter) comes into effect.  

The SQHA shows that the classical freedom principle 
(independence between systems) and the local 
relativistic causality are compatible with the quantum 
mechanics in the frame of a unique theory.  

The possibility of classical freedom comes from the fact 
that, in fluctuating environment asymptotically weakly 
bounded systems can disentangle themselves at large 

distance (beyond the quantum coherence lengths cλ and 

quantum potential range of action qλ ).  

It also noteworthy that in the frame of the SQHA model, 
linear  system  (or  more  tightly  bounded  ones)  do   not  
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disentangle themselves even at large distance forbidding 
the realization of the large-scale classical behavior (so 
that the classical universe as we know is a direct 
consequence of the electrical and gravitational forces that 
goes to zero at infinity). 

The recovering of the quantum mechanics as the 
deterministic limit of a stochastic theory (that is, the 
SQHA) fulfills the philosophical need of determinism 
(Schrödinger, 1935; Einstein et al., 1935; Bell, 1964). In 
the SQHA model the quantum mechanics represent the 
deterministic limit of a stochastic theory. In this picture, 
the deterministic quantum distribution functions can be 
thought as a sort of “mechanical-like” distributions (not 
statistical) whose evolution is determined and well 
defined once the initial distributions and boundary 
conditions are defined.  

The statistical variability and hence the indeterminism 
of the system evolution is introduced by the 
environmental fluctuations.  

In the context of the SQHA model, the large-scale 
classical freedom allows the realization of statistical 
measurements so that, in principle, the description of the 
measurement process (as the interaction with a classical 
observer system) can find its description inside the theory 
itself. 

In the SQHA, the wave-function collapse to an 
eigenstate (due to the interaction with a large scale 
apparatus in a classical fluctuating environment) can 
descend by the irreversible dynamics of the stochastic 
motion equations as a kinetic process to a stationary 
state (eigenstate).  

This fact leads to a quantum theory with the conceptual 
property of a complete theory (that does not need 
additional postulates) able to describe the quantum 
evolution even during irreversible quantum processes 
such as the measurements.  

In the frame of the SQHA model, a non-local based 
theory with the property of large scale local freedom 
compatible with the relativistic postulate of maximum 
speed of light and information transmission (local 
relativistic causality) has no necessity to postulate 
superluminal transmission of information to explain the 
result of quantum experiments obtained at large distance.  

To this end, in the final part of this work we want to 
examine the logical consequences of assuming the 
existence of superluminal transmission of information in 
quantum experiments. 
 
 
ARE SUPERLUMINAL INFORMATION EXCHANGED 
DURING QUANTUM EXPERIMENTS? 
 
The attempts of solving the problem of quantum 
correlations between experiments at large distance (that 
dates back to the foundation of the quantum physics) 
have followed various ways: The local treatment of 
quantum  mechanics  possibly  with  the  help  of   hidden  
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(local) variables. This possibility has been shown to be 
not realizable by the violation of Bell’s inequalities (Bell, 
1964).  

The establishing of non-local theory compatible with the 
classical physics: The completion of quantum mechanics 
by using non-local hidden variables. This hypothesis 
argues that the fully quantum evolution is determined by 
information that cannot be obtained by the observer (von 
Neumann, 1932/1955). The Bohmian mechanics 
furnishes an example of this completion where the hidden 
variables are non local (Maudlin, 1994). 

The assumption that there is a sort of quantum kinetic 
synchronization among quantum entangled particles that 
is maintained along irreversible processes (such as the 
measurement ones) happening in presence of 
fluctuations and involving large-scale classical objects. 
This point of view basically hypothesizes that exists a 
more general quantum theory able to comprehend the 
classical, relativistic and irreversible phenomena. 
Superluminal information are exchanged during quantum 
measurements.  

The cases 2A and 2B even similar, differ each other: 
the first one considers that the quantum mechanics is a 
complete theory for describing the system evolution but it 
has a leaking of information about additional (non-local) 
variables that the classical observer cannot achieve; the 
second one is based upon the assumption that the 
theoretical quantum equations themselves do not allow 
the complete description of the evolution. 

The latter hypothesis can be justified by fact that the 
standard quantum mechanics is a semi-empirical theory 
(needing additional empirical postulates) that is not able 
to describe the quantum irreversible evolution of the 
wave function collapse to an eigenstate during a measure.  

On the other hand, if the decay to an eigenstate cannot 
be determined by the quantum motion equation, but only 
in a probabilistic way, generally speaking, this means that 
we do not have all the complete “machinery” to describe 
the quantum evolution of a system. 

About the existence of superluminal communications in 
quantum experiments, Clauser Horne, Shimony and Holt 
(CHSH) (Clauser et al., 1969) have shown that in 
quantum mechanics experiments the Tirelson’s limit of 

the correlation coefficient SCHSH = 22 cannot be 

overcame, while Popescu and Rohrlich (Popescu and 
Rohrlich, 1994) showed that superluminal communication 
is not necessary for correlated experiments with SCHSH 

< 4 and hence, in principle, they may be not needed in 
quantum mechanics.  

In order to analyze the problem under the light of the 
SQHA model, we discuss below the output of a two 
entangled photons experiment traveling in opposite 
direction in the state: 
 

>+>>= V,V|eH,H||
iφψ

2

1            (40) 

 
 
 
 
that cross polarizers oriented in the same direction 
following the scheme in Figure 1. 

The assumption that the state of the photon is defined 
only after the measurement has taken place leads to 
accept that the photon superposition state interacts with 
the polarizer, but it is still not fully collapsed neither to 

>H|  nor to >V| until it is adsorbed by the polarizer or by 

the photon counter.  
Given that in the SQHA approach the wave function 

collapse is not instantaneous (but takes a time interval 

that we name 1t∆ and 2t∆  for the two photons, 

respectively), the measurement time mτ  starts at the 

arrival of the first entangled photon at its polarizer-photon 

counter system (at the time 1t ) and ends when the other 

entangled one is detected at the second polarizer-photon 

counter system (at the time mtt τ+= 12 ) (the 

contemporary detection of the photons at the two photon-
counters systems when placed at the same distance from 
the source for instance, does not imply that the duration 
of the measurement process is null). 

The better way to perform the experiment is to increase 
as much as possible the distance between the two 

polarizer-photon counter systems L . The best possibility 
is to have such a distance that spans over a cosmological 
length. To comply with this condition, we can think to 
have the source on the Earth, one polarizer-photon 
counter system on the Moon and the other on Mars. We 
can also suppose that the Moon, the Earth and the Mars 
are aligned each others. In this case , it follows that the 
distance between the two polarizer-photon counter 

systems ma-emo-e DDL +=  and that 
c

t mo-eD=1 , 

m
c

t τ+= mo-eD
2 , where mx, 810843≅mo-eD  and 

ma-eD are the Earth-Moon and the Earth-Mars distances 

respectively.  
If we assume that the quantum potential (QP) 

propagates itself at the speed of light for bringing the 
information about the first photon detection to the second 
one, it follows that the measurement time lasts longer 

than 
c

ttm
L

+∆+∆= 21τ . 

Thence, the time delay t∆  between the arrival of the 
second photon to mars and its detection must result: 
 

212 2 tt
cccc

tt m ∆+∆+=−+=−=∆ mo-ema-emo-ema-e DDDD
τ   (41) 

 

Thence if 
212 tt

c
t ∆+∆+<∆ mo-eD or better, 

s.
c

t 5522 ≅<∆ mo-eD  (and, hence, 
c

m
L

<τ ) the photon  



 

 
 
 
 
wave function collapse on mars has happened before the 
arrival of the quantum potential signal coming from the 
first photon detection on the Moon. In this case there is 
no possibility of transferring quantum information 
between the two photons without violating the RLC. 
Therefore two alternative possibilities remain:  
 
1. Superluminal transmission of information during the 
experiment, and  
2. Intrinsic dynamical synchronization fully describeable 
via a complete relativistic quantum stochastic theory. 
 
The two possibilities exclude themselves each other: if 
we own the complete quantum model we would be able 
to describe any physical event without additional 
hypotheses. On the other hand if we do not have it, we 
need a surrogate hypothesis, to fill the gap that in this 
case consists in hypothesizing the superluminal 
transmission of information. In this case, we have to 
define the kind and the characteristics of such an 
interaction and its “mechanics” since it is not contained in 
the quantum one. 
 
 
Conclusion 
 
The work analyzes the non-local property of quantum 
mechanics in the frame of the stochastic QHA model and 
shows that it can have a finite range of action, allowing in 
weakly bounded systems the realization of the classical 
mechanics on large scale limit. 

The analysis shows that it is possible to maintain the 
concept of freedom of the classical reality between far 
away systems beyond the range of interaction of 
quantum potential as well as to make compatible the 
local relativistic causality with the uncertainty principle, 
one of the most relevant manifestations of the non-local 
behavior of the quantum mechanics. 

The moderate non-locality of the SQHA approach can 
be compatible with the assumption that the speed of light 
is the maximum velocity of transmission of information 
and interactions. This is confirmed by the relativistic QHA 
approach that shows that the quantum potential 
propagates the non-local quantum interaction accordingly 
with the relativistic postulate of light speed invariance as 
the maximum velocity of transmission.  

The model shows that the paradox of instantaneous 
quantum action at infinite distances is an artifact that 
appears in the non-relativistic non-stochastic limit of 
quantum mechanics where the light speed goes to infinity 
and non-locality becomes a global property. 

The SQHA model shows that is possible to have a 
theory where moderate non-locality, classical freedom 
and relativistic causality can cohabit together showing 
that there is no need for searching a local quantum 
mechanics (giving a theoretical support to the Bell’s 
inequality violations).  
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On the base of a simple two photon experiment, the 
paper shows that the intellectual necessity of postulating 
that superluminal information are exchanged during non-
local quantum experiments may be due to the leaking of 
theoretical completeness of the standard quantum 
formalism.  
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APPENDIX A 
 
In the QHA the eigenstates can be identified by the their 
stationarity that happens due the fact that the force 
generated by the quantum potential exactly 
counterbalance that one due to the Hamiltonian potential 

(with the initial condition 0  =
•

q ).  

Since the quantum potential changes with the state of 
the system, more than one stationary state (each one 

with its own 
n

quV ) is possible and more than one 

quantized eigenvalues of the energy may exist with the 
corresponding action values: 
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The above statements can be straightforwardly checked 
in the case of a linear system. For a harmonic oscillator 

described by the Hamiltonian 2
22

22
q

m

m

p
H

ω
+= , 

whose generic n-th eigenstate reads: 
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Figure 1. Schematic drawing of the experimental apparatus.  

 
 
 

(where (x)Hn represents the n-th Hermite polynomial) the 

density (q, t)
n  and the action (q,t)S  respectively read: 
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Figure 2. The repulsive quantum potential for the firsts five 

eigenstates of a harmonic oscillator. 

 
 

(t)(q,t) SS = ,                                  (A.3) 

 
leading to the quantum potential of the n-th eigenstate 
(Figure 2)  
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where it has been used the recurrence formula of the 
Hermite polynomials  
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that gives the following energy eigenvalues  
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as well as:  
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APPENDIX B 
 
Large-distance quantum force 
 
To obtain the macro-scale form of equations (47) we 
need to evaluate the large-scale limit of the quantum 

force quqqu Vx −∇≡
•

in it. The behavior of 21n /  

determines the quantum potential (QP) in (5). For sake of 
simplicity, we discuss the one-dimensional case of 

localized state with 21n / that at large distance goes like: 
 

])q(Pexp[lim k

|q|

/ −∝
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21n                         (B.1)  

 

where )q(
kP is a polynomial of degree equal to k, 

qzq
1−= γ is the macroscopic variable (where 

qλ
γ

q∆
= , 

where q∆ is the macro-scale resolution) and qλ is the 

range of the QP interaction. By using (B.1), the QP (5) at 
large scale reads: 
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where k23 −=φ .  

Thence, for 
2

3
<k (that is, 0>φ ) ∀ 0≠qz finite , the 

quantum force quqV∇−  at large scale (that is, 

∞→=∞→ qzq, γγ    ) reads: 
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Moreover, since the integral: 
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converges for 0>φ , (B.4) tells us if the QP force is 
negligible on large scale as given by (B.3). Therefore, 
finite values of the mean weighted distance: 
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warrants the vanishing of QP at large distance and, 
hence, it can be assumed as an evaluation of the 
quantum potential range of interaction.  

It is worth mentioning that condition (B.4) is not 
satisfied by linear systems whose eigenstates have 

1−=φ  (22), so that ∞=qλ  and they cannot admit the 

classical limit. 
It is also worth noting that condition (B.4), obtained for 

21n /  owing the form (B.1), also holds in the case of 
oscillating wave functions whose modulus is of type: 
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where )q(
p

nA  are polynomials of degree equal to p. In 

this case, in addition to the requisite
2

3
0 <≤ k , the 

conditions m∈ℜ and p ≤ 1 are required to warrant 

(B.4) (38).  
For instance, the Lennard-Jones-type potentials 
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In the multidimensional case, qλ  depends by the path 

of integration Σ and (B.5) reads: 
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where |q|r =  and idΣ  is the incremental vector tangent 

to Σ . 

Since, the physical meaning of qλ must be independent 

by the path of integration (we know that 
i
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integrable but do we do not know nothing about the 

integrability of |
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1 ) in order to well define qλ  

the fixation of the integral path is needed. If we choose 

the integration path irm=Σ where im is a generic versor, 

qλ reads: 
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Moreover, since in order to evaluate at what distance the 
quantum force becomes negligible whatever is the 

direction of the versor im , among the values of (B.8) we 

must consider the maximum one so, finally, qλ reads: 
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B.1: QUANTUM potential characteristics 
 
In order to elucidate the interplay between the 
Hamiltonian potential and the quantum potential, that 
together define the quantum evolution of the particle, we 
observe that the quantum potential is primarily defined by 
the PD.  

Fixed the PD at the initial time, then the Hamiltonian 
potential and the quantum one determine the evolution of 
the PD in the following instants that on its turn modifies 
the quantum potential. 

A Gaussian PD has a parabolic repulsive quantum 
potential, if the Hamiltonian potential is parabolic too (the 
free case is included), when the PD wideness adjusts 
itself to produce a quantum potential that exactly 
compensates the force of the Hamiltonian one, the 
Gaussian states becomes stationary (eigenstates). In the 
free case, the stationary state is the flat Gaussian (with 
an infinite variance) so that any free Gaussian PD 
expands itself following the ballistic dynamics of quantum  
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mechanics since the Hamiltonian potential is null and the 
quantum one is a quadratic repulsive one.  

From the general point of view, we can say that if the 
Hamiltonian potential grows faster than a harmonic one, 
the wave equation of a self-state is more localized than a 
Gaussian one and this leads to a stronger-than a 
quadratic quantum potential.  

On the contrary, a Hamiltonian potential that grows 
slower than a harmonic one will produce a less localized 
PD that decreases slower than the Gaussian one, so that 
the quantum potential is weaker than the quadratic one 
and it may lead to a finite quantum non-locality length 
(B.5).  

More precisely, as shown above, the large distances 
exponential-decay of the PD given by (B.1) with k<3/2 is 
a sufficient condition to have a finite quantum non-locality 
length (20).  

In absence of noise, we can identify three typologies of 
quantum potential interactions (in the uni-dimensional 
case): k> 2 strong quantum potential that leads to 

quantum force that grows faster than linearly and qλ is 

infinite (super-ballistic expansion for the free particle PD) 
and reads: 
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k = 2 that leads to quantum force that grows linearly  
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and qλ is infinite (ballistic expansion for the free particle 

PD); 2 > k ≥  3/2 “middle quantum potential”; the 
integrand of (B.4) will result: 
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The quantum force remains finite or even becomes 

vanishing at large distance but qλ may be still infinite 

(under-ballistic expansion for the free particle PD). 
k < 3/2 “week quantum potential” interaction leading to 

quantum force that becomes vanishing at large distance 
following the asymptotic behavior: 
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with a finite qλ for T ≠ 0 (asymptotically vanishing 

expansion for the free particle PD). 
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B.2 Pseudo-Gaussian particle 
 
Gaussian particles generate a quadratic quantum 
potential that is not vanishing at large distance and hence 
cannot lead to macroscopic local dynamics. 
Nevertheless, imperceptible deviation by the perfect 
Gaussian PD may possibly lead to finite quantum non-
locality length. Particles that are inappreciably less 
localized than the Gaussian ones (let’s name them as 

pseudo-Gaussian) own 
q

Vqu

∂

∂
that can sensibly deviate 

by the linearity so that the quantum non-locality length 
may be finite. 
We have seen above that for k < 3/2 (when the PD 
decreases slower than a Gaussian) a finite range of 

interaction of the quantum potential qλ  is possible.  

The Gaussian shape is a physically good description of 
particle localization, but irrelevant deviations from it, at 
large distance, are decisive to determine the quantum 
non-locality length.  

For instance, let’s consider the pseudo-Gaussian wave-
function type: 
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where )qq(f − is an opportune regular function obeying 

to the condition: 
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For small distance it holds 
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and the localization given by the PD is physically 
indistinguishable from a Gaussian one, while for large 
distance we obtain the behavior: 
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For instance, we may consider the following examples 
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(b) 
 

)qq(f − = 1+ |q - q|                     (B.20) 
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(c) 
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(d) 
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All cases (a-d) lead to a finite quantum non-locality length 

qλ . 

In the case (d) the quantum potential for 

∞→− |qq| reads: 
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leading, for 0< g <2, to the quantum force: 
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that for g < 3/2 gives 
0=∇−∞→− quq|qq| Vlim

. It is 

interesting to note that for g =2 (linear case): 
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the quantum potential is quadratic 
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and the quantum force is linear (repulsive) and reads 
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The linear form of the force exerted by the quantum potential 
leads to the ballistic expansion (variance that grows linearly 
with time) of the free Gaussian quantum states. 
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